首页> 外文期刊>Advanced energy materials >Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend
【24h】

Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend

机译:基于低结晶度共轭聚合物共混物的卷对卷印刷大面积全聚合物太阳能电池,效率为5%

获取原文
获取原文并翻译 | 示例
           

摘要

The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. A materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor is presented. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-toroll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm(2). This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.
机译:高效大面积有机太阳能电池中连续印刷的挑战是其广泛采用的关键限制因素。提出了一种材料设计概念,用于实现在施主和受主之间具有稳定的相分离形态的大面积溶液涂覆全聚合物本体异质结太阳能电池。关键概念在于抑制供体和受体聚合物的强烈结晶,从而形成相互混合的,低结晶度的,且大多为无定形的混合物。基于使用具有不同结晶度的供体和受体的实验,结果表明,微相分离的供体和受体域尺寸与共轭聚合物的结晶度成反比。这种使用低结晶度施主和受主的方法具有形成一致且稳定的形态的额外好处,该形态对不同的加工条件不敏感,从而使人们可以轻松地将印刷过程从小型溶液剪切涂布机扩大到大规模连续卷对卷(R2R)打印机。大面积全聚合物太阳能电池采用连续卷轴式槽模印刷,功率转换效率为5%,组合电池面积最大为10 cm(2)。这是在柔性基板上使用R2R涂层活性层有机材料实现的最高效率之一。

著录项

  • 来源
    《Advanced energy materials》 |2017年第14期|1602742.1-1602742.13|共13页
  • 作者单位

    Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA|SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA|Univ Southern Mississippi, Sch Polymers & High Performance Mat, Hattiesburg, MS 39406 USA;

    Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA;

    Peking Univ, Coll Chem, Beijing 100871, Peoples R China;

    Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China|Hong Kong Univ Sci & Technol, Hong Kong Branch, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Kowloon, Hong Kong, Peoples R China;

    Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China|Hong Kong Univ Sci & Technol, Hong Kong Branch, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Kowloon, Hong Kong, Peoples R China;

    Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA|Queen Mary Univ London, Mat Res Inst, Mile End Rd, London E1 4NS, England|Queen Mary Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England;

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA|Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China|Hong Kong Univ Sci & Technol, Hong Kong Branch, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Kowloon, Hong Kong, Peoples R China;

    Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA;

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA;

    Lawrence Berkeley Natl Lab, Adv Light Source, Menlo Pk, CA 94025 USA;

    Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany;

    Peking Univ, Coll Chem, Beijing 100871, Peoples R China;

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA;

    Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号