首页> 外文期刊>Advanced energy materials >Boosting Photoelectrochemical Water Splitting by TENG-Charged Li-Ion Battery
【24h】

Boosting Photoelectrochemical Water Splitting by TENG-Charged Li-Ion Battery

机译:TENG充电锂离子电池促进光电化学水分解

获取原文
获取原文并翻译 | 示例
           

摘要

The need for cost-effective and sustainable power supplies has spurred a growing interest in hybrid energy harvesting systems, and the most elementary energy production process relies on intermittent solar power. Here, it is shown how the ambient mechanical energy leads to water splitting in a photoelectrochemical (PEC) cell boosted by a triboelectric nanogenerator (TENG). In this strategy, a flexible TENG collects and transforms mechanical energy into electric current, which boosts the PEC water splitting via the charged Li-ion battery. Au nanoparticles are deposited on TiO2 nanoarrays for extending the available light spectrum to visible part by surface plasmon resonance effect, which yields a photocurrent density of 1.32 mA cm(-2) under AM 1.5 G illumination and 0.12 mA cm(-2) under visible light with a bias of 0.5 V. The TENG-charged battery boosts the water splitting performance through coupling electrolysis and enhanced electron-hole separation efficiency. The hybrid cell exhibits an instantaneous current more than 9 mA with a working electrode area of 0.3 cm(2), suggesting a simple but efficient route for simultaneously converting solar radiation and mechanical energy into hydrogen.
机译:对经济高效且可持续的电源的需求激起了人们对混合能源收集系统的兴趣,而最基本的能源生产过程依赖于间歇性太阳能。在这里,显示了环境机械能如何导致由摩擦电纳米发电机(TENG)推动的光电化学(PEC)电池中的水分解。在这种策略中,灵活的TENG可以收集机械能并将其转换为电流,从而促进PEC通过已充电的锂离子电池进行水分解。金纳米颗粒沉积在TiO2纳米阵列上,通过表面等离子体共振效应将可用光谱扩展到可见光部分,在AM 1.5 G照明下产生1.32 mA cm(-2)的光电流密度,在可见光下产生0.12 mA cm(-2)充满TENG的电池通过耦合电解和增强的电子-空穴分离效率提高了水分解性能。混合电池的瞬时电流大于9 mA,工作电极面积为0.3 cm(2),表明同时将太阳辐射和机械能转化为氢的简单而有效的途径。

著录项

  • 来源
    《Advanced energy materials》 |2017年第15期|1700124.1-1700124.7|共7页
  • 作者单位

    Chinese Acad Sci, Natl Ctr Nanosci & Technol NCNST, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Natl Ctr Nanosci & Technol NCNST, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Natl Ctr Nanosci & Technol NCNST, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Natl Ctr Nanosci & Technol NCNST, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China|Univ Sci & Technol Beijing, Res Ctr Bioengn & Sensing Technol, Beijing Key Lab Bioengn & Sensing Technol, Sch Chem & Biol Engn, Beijing 100083, Peoples R China|Univ Sci & Technol Beijing, Beijing Municipal Key Lab New Energy Mat & Techno, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Natl Ctr Nanosci & Technol NCNST, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Ctr Green Innovat, Beijing Key Lab Magnetophotoelect Composite & Int, Sch Math & Phys, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Natl Ctr Nanosci & Technol NCNST, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China|Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号