首页> 外文期刊>Advanced energy materials >Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
【24h】

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes

机译:液态电解质快速充电的锂金属电池的失效机理

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, the Li metal anode has regained a position of paramount research interest because of the necessity for employing Li metal in next-generation battery technologies such as Li-S and Li-O2. Severely limiting this utilization, however, are the rapid capacity degradation and safety issues associated with rechargeable Li metal anodes. A fundamental understanding of the failure mechanism of Li metal at high charge rates has remained elusive due to the complicated interfacial chemistry that occurs between Li metal and liquid electrolytes. Here, it is demonstrated that at high current density the quick formation of a highly resistive solid electrolyte interphase (SEI) entangled with Li metal, which grows towards the bulk Li, dramatically increases up the cell impedance and this is the actual origin of the onset of cell degradation and failure. This is instead of dendritic or mossy Li growing outwards from the metal surface towards/through the separator and/or the consumption of the Li and electrolyte through side reactions. Interphase, in this context, refers to a substantive layer rather than a thin interfacial layer. Discerning the mechanisms and consequences for this interphase formation is crucial for resolving the stability and safety issues associated with Li metal anodes.
机译:近年来,由于在诸如Li-S和Li-O2之类的下一代电池技术中采用锂金属的必要性,锂金属阳极重新获得了最重要的研究兴趣。然而,与可再充电锂金属阳极相关的快速容量下降和安全问题严重地限制了这种利用。由于在锂金属和液体电解质之间发生了复杂的界面化学反应,因此对于高充电速率下的锂金属的失效机理的基本了解仍然难以捉摸。在此证明,在高电流密度下,与锂金属缠结的高电阻固体电解质中间相(SEI)的快速形成(朝着大块锂的方向生长)极大地增加了电池阻抗,这是发病的实际原因细胞降解和失效的原因。这代替了树枝状或长满的锂从金属表面朝着/穿过隔板向外生长和/或通过副反应消耗了锂和电解质。在本文中,相间是指实质层而不是薄界面层。识别这种相间形成的机理和后果对于解决与锂金属阳极相关的稳定性和安全性问题至关重要。

著录项

  • 来源
    《Advanced energy materials》 |2015年第3期|1-7|共7页
  • 作者单位

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Chemical Sciences and Engineering Division Argonne National Laboratory Argonne IL USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

    Electrochemical Materials and Systems Group Energy and Environment Directorate Pacific Northwest National Laboratory (PNNL) Richland WA USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    lithium batteries; failure mechanisms; interphases; interfacial chemistry;

    机译:锂电池;失效机理;相间;界面化学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号