首页> 外文期刊>Advanced energy materials >Engineering Mixed Ionic Electronic Conduction in La0.8Sr0.2MnO3+δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity
【24h】

Engineering Mixed Ionic Electronic Conduction in La0.8Sr0.2MnO3+δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

机译:La0.8Sr0.2MnO3 +δ纳米结构中通过快速晶界氧扩散技术工程混合离子电子传导

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoionics has become an increasingly promising field for the future development of advanced energy conversion and storage devices, such as batteries, fuel cells, and supercapacitors. Particularly, nanostructured materials offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. However, the enhancement of the mass transport properties at the nanoscale has often been found to be difficult to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with high density of vertically aligned GBs with high concentration of strain-induced defects. Since this type of GBs present a remarkable enhancement of their oxide-ion mass transport properties (of up to six orders of magnitude at 773 K), it is possible to tailor the electrical nature of the whole material by nanoengineering, especially at low temperatures. The presented results lead to fundamental insights into oxygen diffusion along GBs and to the application of these engineered nanomaterials in new advanced solid state ionics devices such are micro-solid oxide fuel cells or resistive switching memories.
机译:对于高级能量转换和存储设备(例如电池,燃料电池和超级电容器)的未来发展,纳米离子已成为一个越来越有前途的领域。特别地,纳米结构材料在一系列能量装置中提供独特的特性或作为电极和电解质的特性组合。然而,常常发现难以在纳米结构中实现纳米级传质的增强。在此,通过La0.8Sr0.2MnO3 +δ的晶界(GB)工程薄膜制造了人工混合离子电子导电氧化物。通过合成具有高密度的垂直排列的GBs和高浓度的应变诱发缺陷的纳米结构,可以将该电子导体转换为良好的混合离子电子导体。由于这种类型的GB显着提高了其氧化物离子的传质性能(在773 K时达到了六个数量级),因此可以通过纳米工程技术来调整整个材料的电特性,尤其是在低温下。提出的结果使人们对沿GBs的氧扩散有了基本的认识,并将这些工程纳米材料应用于新型先进的固态离子设备中,例如微固体氧化物燃料电池或电阻开关存储器。

著录项

  • 来源
    《Advanced energy materials》 |2015年第11期|1-6|共6页
  • 作者单位

    Department of Advanced Materials for Energy Applications Catalonia Institute for Energy Research (IREC) Sant AdriÀ del BesÒs Barcelona Spain;

    Department of Advanced Materials for Energy Applications Catalonia Institute for Energy Research (IREC) Sant AdriÀ del BesÒs Barcelona Spain;

    Department of Advanced Materials for Energy Applications Catalonia Institute for Energy Research (IREC) Sant AdriÀ del BesÒs Barcelona Spain;

    Department of Materials Imperial College London London UK;

    Instituto de EnergÍas Renovables Universidad de Castilla-La Mancha Albacete Spain;

    Department of Materials Imperial College London London UK;

    Hydrogen Production Division International Institute for Carbon-Neutral Energy Research (I2CNER) Nishi-Ku Fukuoka Japan;

    Department of Advanced Materials for Energy Applications Catalonia Institute for Energy Research (IREC) Sant AdriÀ del BesÒs Barcelona Spain;

    Department of Materials Imperial College London London UK;

    Department of Advanced Materials for Energy Applications Catalonia Institute for Energy Research (IREC) Sant AdriÀ del BesÒs Barcelona Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    grain boundary engineering; mixed ionic electronic conductors; nanoionics; thin films;

    机译:晶界工程;混合离子电子导体;纳米离子;薄膜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号