首页> 外文期刊>Advanced energy materials >Structure-Controlled, Vertical Graphene-Based, Binder-Free Electrodes from Plasma-Reformed Butter Enhance Supercapacitor Performance
【24h】

Structure-Controlled, Vertical Graphene-Based, Binder-Free Electrodes from Plasma-Reformed Butter Enhance Supercapacitor Performance

机译:等离子体改性黄油的结构可控的,基于石墨烯的垂直无粘结剂电极增强了超级电容器的性能

获取原文
获取原文并翻译 | 示例
           

摘要

Vertical graphene nanosheets (VGNS) hold great promise for high-performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three-dimensional, open network structure. However, it remains challenging to materialise the VGNS-based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non-cost effective way of fabrication. Here we use a single-step, fast, scalable, and environmentally-benign plasma-enabled method to fabricate VGNS using cheap and spreadable natural fatty precurso butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder-free supercapacitor electrodes exhibit high specific capacitance up to 230 F g~(-1) at a scan rate of 10 mV s~(-1) and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO_2/VGNS nano-architectures which synergistically combine the advantages from both VGNS and MnO_2. This deterministic and plasma-unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.
机译:垂直石墨烯纳米片(VGNS)具有出色的电传输性能,大表面积,尤其是固有的三维开放网络结构,对高性能超级电容器具有广阔的前景。然而,由于基于VGNS的超级电容器的比电容差,高温处理,与电极支撑材料的粘合性差,无法控制的微结构以及非成本有效的制造方式,因此仍然具有挑战性。在这里,我们使用一步法,快速,可扩展且对环境有益的等离子体激活方法,使用廉价且可分散的天然脂肪前体黄油制备VGNS,并展示了石墨化程度和VGNS边缘平面密度的可控性。我们的VGNS用作无粘结剂的超级电容器电极,在10 mV s〜(-1)的扫描速率下,显示高达230 F g〜(-1)的高比电容,在1500次充放电循环后,其电容保持率大于99%。当使用石墨结构和边缘平面效应的最佳组合时,电流密度高。通过形成稳定的混合MnO_2 / VGNS纳米结构,可以进一步增强能量存储性能,该结构将VGNS和MnO_2的优势协同结合。这种制造VGNS的确定性和等离子体独特的方式可能为生产用于先进储能设备的功能纳米材料开辟新途径。

著录项

  • 来源
    《Advanced energy materials》 |2013年第10期|1316-1323|共8页
  • 作者单位

    Plasma Nanoscience CSIRO Materials Science and Engineering P.O. Box 218, Lindfield, New South Wales 2070, Australia,School of Physics The University of Sydney New South Wales 2006, Australia;

    Plasma Nanoscience CSIRO Materials Science and Engineering P.O. Box 218, Lindfield, New South Wales 2070, Australia;

    Plasma Nanoscience CSIRO Materials Science and Engineering P.O. Box 218, Lindfield, New South Wales 2070, Australia;

    Plasma Nanoscience CSIRO Materials Science and Engineering P.O. Box 218, Lindfield, New South Wales 2070, Australia,School of Physics The University of Sydney New South Wales 2006, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号