首页> 外文期刊>Advanced energy materials >Design of Carbon Nanotube-Based Gas-Diffusion Cathode for O2 Reduction by Multicopper Oxidases
【24h】

Design of Carbon Nanotube-Based Gas-Diffusion Cathode for O2 Reduction by Multicopper Oxidases

机译:碳纳米管基气体扩散阴极用于多铜氧化酶还原O2的设计

获取原文
获取原文并翻译 | 示例
           

摘要

Multicopper oxidases, such as laccase or bilirubin oxidase, are known to reduce molecular oxygen at very high redox potentials, which makes them attractive biocatalysts for enzymatic cathodes in biological fuel cells. By designing an enzymatic gas-diffusion electrode, molecular oxygen can be supplied through the gaseous phase, avoiding solubility and diffusion limitations typically associated with liquid electrolytes. In doing so, the current density of enzymatic cathodes can theoretically be enhanced. This publication presents a material study of carbon/Teflon composites that aim to optimize the functionality of the gas-diffusion and catalytic layers for application in enzymatic systems. The modification of the catalytic layer with multiwalled carbon nanotubes, for example, creates the basis for stronger π–π stacking interactions through tethered enzymatic linkers, such as pyrenes or perylene derivates. Cyclic voltammograms show the effective direct electron contact of laccase with carbon nanotube-modified electrodes via tethered crosslinking molecules as a model system. The polarization behavior of laccase-modified gas-diffusion electrodes reveals open-circuit potentials of +550 mV (versus Ag/AgCl) and current densities approaching 0.5 mA cm2 (at zero potential) in air-breathing mode.
机译:已知诸如漆酶或胆红素氧化酶的多铜氧化酶以非常高的氧化还原电势还原分子氧,这使其成为生物燃料电池中酶促阴极的有吸引力的生物催化剂。通过设计酶促气体扩散电极,可以通过气相供应分子氧,避免了通常与液体电解质相关的溶解度和扩散限制。这样做,理论上可以提高酶阴极的电流密度。该出版物提出了碳/铁氟龙复合材料的材料研究,旨在优化用于酶体系的气体扩散和催化层的功能。例如,用多壁碳纳米管对催化层的改性,为通过t式酶联体(例如pyr或per衍生物)进行更强的π-π堆积相互作用奠定了基础。循环伏安图显示了漆酶与碳纳米管修饰电极通过束缚的交联分子作为模型系统的有效直接电子接触。漆酶修饰的气体扩散电极的极化行为表明,在空气呼吸模式下,开路电势为+550 mV(相对于Ag / AgCl),电流密度接近0.5 mA cm2(在零电势下)。

著录项

  • 来源
    《Advanced energy materials》 |2012年第1期|1-7|共7页
  • 作者单位

    The University of New Mexico Center for Emerging Energy Technologies Albuquerque NM 87131 USA;

    The University of New Mexico Center for Emerging Energy Technologies Albuquerque NM 87131 USA;

    Microbiology and Applied Biochemistry Airbase Sciences Air Force Research Laboratory Tyndall Air Force Base FL 32403 USA;

    Nano-Electrochemistry Laboratory Faculty of Engineering University of Georgia Athens GA 30602 USA;

    Microbiology and Applied Biochemistry Airbase Sciences Air Force Research Laboratory Tyndall Air Force Base FL 32403 USA;

    Microbiology and Applied Biochemistry Airbase Sciences Air Force Research Laboratory Tyndall Air Force Base FL 32403 USA;

    The University of New Mexico Center for Emerging Energy Technologies Albuquerque NM 87131 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gas-diffusion cathodes; multicopper oxidases; oxygen reduction; carbon nanotubes; biofuel cells;

    机译:气体扩散阴极;多铜氧化酶;氧还原;碳纳米管;生物燃料电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号