首页> 外文期刊>Advanced energy materials >Flexible Nano-felts of Carbide-Derived Carbon with Ultra-high Power Handling Capability
【24h】

Flexible Nano-felts of Carbide-Derived Carbon with Ultra-high Power Handling Capability

机译:具有超高功率处理能力的硬质碳化碳纳米毡

获取原文
获取原文并翻译 | 示例
           

摘要

Nano-fibrous felts (nano-felts) of carbide-derived carbon (CDC) have been developed from the precursor of electrospun titanium carbide (TiC) nano-felts. Conformal transformation of TiC into CDC conserves main features of the precursor including the high interconnectivity and structural integrity; the developed TiC-CDC nano-felts are mechanically flexible/resilient, and can be used as electrode material for supercapacitor application without the addition of any binder. After synthesis through chlorination of the precursor at 600°C, the TiC-CDC nano-fibers show an average pore size of ∼1nm, a high specific surface area of 1390 m2/g; and the nano-fibers have graphitic carbon ribbons embedded in a highly disordered carbon matrix. Graphitic carbon is preserved from the precursor nano-fibers where a few graphene layers surround TiC nanocrystallites. Electrochemical measurements show a high gravimetric capacitance of 110 F/g in aqueous electrolyte (1 M H2SO4) and 65 F/g in organic electrolyte (1.5 M TEA-BF4 in acetonitrile). Because of the unique microstructure of TiC-CDC nano-felts, a fade of the capacitance of merely 50% at a high scan rate of 5 V/s is observed. A fade of just 15% is observed for nano-felt film electrodes tested in 1 M H2 SO4 at 1 V/s, resulting in a high gravimetric capacitance of 94 F/g. Such a high rate performance is only known for graphene or carbon-onion based supercapacitors, whereas binders have to be used for the fabrication of those supercapacitors.
机译:碳化物衍生碳(CDC)的纳米纤维毡(纳米毡)是由电纺碳化钛(TiC)纳米毡的前体开发而成的。 TiC的保形转化为CDC保留了前体的主要特征,包括高互连性和结构完整性。开发的TiC-CDC纳米毡具有机械柔韧性/回弹性,可以用作超级电容器应用的电极材料,而无需添加任何粘合剂。 TiC-CDC纳米纤维在600°C氯化前驱体后合成后,平均孔径约为1nm,比表面积为1390 m2 / g。纳米纤维在高度无序的碳基体中嵌入了石墨碳带。从前体纳米纤维中保留了石墨碳,其中一些石墨烯层围绕TiC纳米微晶。电化学测量表明,在水溶液电解质(1 M H2SO4)中有110 F / g的重电容,在有机电解质(乙腈中有1.5 M TEA-BF4)中有65 F / g的重电容。由于TiC-CDC纳米毡的独特微观结构,在5 V / s的高扫描速率下,观察到的电容衰减仅为50%。在1 M H2 SO4中以1 V / s的速度测试的纳米毡薄膜电极仅观察到15%的褪色,从而产生了94 F / g的高重量电容。这样的高速率性能仅对于基于石墨烯或碳洋葱的超级电容器是已知的,而粘合剂必须用于制造那些超级电容器。

著录项

  • 来源
    《Advanced energy materials》 |2011年第3期|1-8|共8页
  • 作者单位

    Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute Drexel University Philadelphia PA 19104 USA;

    Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute Drexel University Philadelphia PA 19104 USA;

    Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute Drexel University Philadelphia PA 19104 USA;

    Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute Drexel University Philadelphia PA 19104 USA;

    Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute Drexel University Philadelphia PA 19104 USA;

    Department of Chemistry South Dakota School of Mines and Technology Rapid City SD 57701 USA;

    Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute Drexel University Philadelphia PA 19104 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    carbide derived carbon; electrospinning; nano-felt; supercapacitor; titanium carbide;

    机译:碳化物衍生碳;静电纺丝;纳米毡;超级电容器;碳化钛;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号