首页> 外文期刊>Advanced Functional Materials >Role of the Anion on the Transport and Structure of Organic Mixed Conductors
【24h】

Role of the Anion on the Transport and Structure of Organic Mixed Conductors

机译:阴离子在有机混合导体的传输和结构中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Organic mixed conductors are increasingly employed in electrochemical devices operating in aqueous solutions that leverage simultaneous transport of ions and electrons. Indeed, their mode of operation relies on changing their doping (oxidation) state by the migration of ions to compensate for electronic charges. Nevertheless, the structural and morphological changes that organic mixed conductors experience when ions and water penetrate the material are not fully understood. Through a combination of electrochemical, gravimetric, and structural characterization, the effects of water and anions with a hydrophilic conjugated polymer are elucidated. Using a series of sodium-ion aqueous salts of varying anion size, hydration shells, and acidity, the links between the nature of the anion and the transport and structural properties of the polymer are systematically studied. Upon doping, ions intercalate in the crystallites, permanently modifying the lattice spacings, and residual water swells the film. The polymer, however, maintains electrochemical reversibility. The performance of electrochemical transistors reveals that doping with larger, less hydrated, anions increases their transconductance but decreases switching speed. This study highlights the complexity of electrolyte-mixed conductor interactions and advances materials design, emphasizing the coupled role of polymer and electrolyte (solvent and ion) in device performance.
机译:有机混合导体越来越多地用于在水溶液中运行的,同时利用离子和电子传输的电化学装置中。实际上,它们的操作模式依赖于通过离子迁移来改变其掺杂(氧化)状态以补偿电荷。然而,当离子和水渗透到材料中时,有机混合导体所经历的结构和形态变化还没有被完全理解。通过电化学,重量分析和结构表征的结合,阐明了水和阴离子与亲水性共轭聚合物的作用。使用一系列阴离子大小,水合壳和酸度不同的钠离子水盐,系统地研究了阴离子的性质与聚合物的迁移和结构性质之间的联系。掺杂后,离子嵌入微晶中,永久改变了晶格间距,残留的水使薄膜膨胀。然而,该聚合物保持电化学可逆性。电化学晶体管的性能表明,掺杂较大,水合较少的阴离子会增加其跨导,但会降低开关速度。这项研究突出了电解质混合导体相互作用的复杂性,并推进了材料设计,强调了聚合物和电解质(溶剂和离子)在器件性能中的耦合作用。

著录项

  • 来源
    《Advanced Functional Materials》 |2019年第5期|1807034.1-1807034.11|共11页
  • 作者单位

    Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA|Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    Imperial Coll London, Dept Chem, London SW7 2AZ, England|Imperial Coll London, Dept Phys, London SW7 2AZ, England;

    KAUST, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi Arabia;

    Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA|Northwestern Univ, Simpson Querrey Inst BioNanotechnol, Chicago, IL 60611 USA;

    Imperial Coll London, Dept Chem, London SW7 2AZ, England|KAUST, KSC, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia;

    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA;

    KAUST, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi Arabia;

    Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA|Northwestern Univ, Simpson Querrey Inst BioNanotechnol, Chicago, IL 60611 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bioelectronics; doping; organic mixed conductors; structure-property relationships;

    机译:生物电子学;掺杂;有机混合导体;结构-性质关系;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号