首页> 外文期刊>Advanced Functional Materials >High-Voltage Charging-Induced Strain, Heterogeneity, and Micro-Cracks in Secondary Particles of a Nickel-Rich Layered Cathode Material
【24h】

High-Voltage Charging-Induced Strain, Heterogeneity, and Micro-Cracks in Secondary Particles of a Nickel-Rich Layered Cathode Material

机译:富镍层状阴极材料的次级粒子中的高压充电诱导的应变,异质性和微裂纹。

获取原文
获取原文并翻译 | 示例
           

摘要

Nickel-rich layered materials LiNi1-x-yMnxCoyO2 are promising candidates for high-energy-density lithium-ion battery cathodes. Unfortunately, they suffer from capacity fading upon cycling, especially with high-voltage charging. It is critical to have a mechanistic understanding of such fade. Herein, synchrotron-based techniques (including scattering, spectroscopy, and microcopy) and finite element analysis are utilized to understand the LiNi0.6Mn0.2Co0.2O2 material from structural, chemical, morphological, and mechanical points of view. The lattice structural changes are shown to be relatively reversible during cycling, even when 4.9 V charging is applied. However, local disorder and strain are induced by high-voltage charging. Nano-resolution 3D transmission X-ray microscopy data analyzed by machine learning methodology reveal that high-voltage charging induced significant oxidation state inhomogeneities in the cycled particles. Regions at the surface have a rock salt-type structure with lower oxidation state and build up the impedance, while regions with higher oxidization state are scattered in the bulk and are likely deactivated during cycling. In addition, the development of micro-cracks is highly dependent on the pristine state morphology and cycling conditions. Hollow particles seem to be more robust against stress-induced cracks than the solid ones, suggesting that morphology engineering can be effective in mitigating the crack problem in these materials.
机译:富镍层状材料LiNi1-x-yMnxCoyO2是高能量密度锂离子电池正极的有前途的候选材料。不幸的是,它们在循环时会遭受容量衰减,特别是在高压充电时。对这种褪色有机械的理解是至关重要的。本文中,基于同步加速器的技术(包括散射,光谱学和显微技术)和有限元分析被用来从结构,化学,形态和机械的角度理解LiNi0.6Mn0.2Co0.2O2材料。已显示,即使在施加4.9 V充电时,晶格结构的变化在循环过程中也是相对可逆的。但是,高压充电会引起局部无序和应变。通过机器学习方法分析的纳米分辨率3D透射X射线显微镜数据显示,高压充电在循环的颗粒中引起明显的氧化态不均匀性。表面的区域具有较低的氧化态的岩盐型结构并增加了阻抗,而具有较高的氧化态的区域则散布在主体中,并可能在循环过程中失活。另外,微裂纹的发展高度依赖于原始状态形态和循环条件。中空颗粒似乎比实心颗粒更能抵抗应力引起的裂纹,这表明形态工程学可以有效缓解这些材料中的裂纹问题。

著录项

  • 来源
    《Advanced Functional Materials》 |2019年第18期|1900247.1-1900247.11|共11页
  • 作者单位

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source, Menlo Pk, CA 94025 USA|Nanjing Univ Aeronaut & Astronaut, Sch Comp Sci & Technol, Nanjing 211100, Jiangsu, Peoples R China;

    Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA;

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source, Menlo Pk, CA 94025 USA;

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source, Menlo Pk, CA 94025 USA|Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China;

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source, Menlo Pk, CA 94025 USA;

    Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA;

    Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA;

    Nanjing Univ Aeronaut & Astronaut, Sch Comp Sci & Technol, Nanjing 211100, Jiangsu, Peoples R China;

    European Synchrotron Radiat Facil, F-38000 Grenoble, France;

    Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA;

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source, Menlo Pk, CA 94025 USA;

    Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA;

    Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA;

    Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA;

    Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA;

    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source, Menlo Pk, CA 94025 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    data mining; finite element analysis; lithium ion batteries; nickel-rich layered; synchrotron characterization;

    机译:数据挖掘有限元分析锂离子电池富镍层同步辐射表征;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号