首页> 外文期刊>Advanced Functional Materials >Synthesis and Properties of Plasmonic Boron-Hyperdoped Silicon Nanoparticles
【24h】

Synthesis and Properties of Plasmonic Boron-Hyperdoped Silicon Nanoparticles

机译:等离子体硼超掺杂硅纳米粒子的合成与性能

获取原文
获取原文并翻译 | 示例
           

摘要

Electronic properties of silicon, the most important semiconductor material, are controlled through doping. The range of achievable properties can be extended by hyperdoping, i.e., doping to concentrations beyond the nominal equilibrium solubility of the dopant. Here, hyperdoping is achieved in a laser pyrolysis reactor capable of providing nonequilibrium conditions, where doping is governed by kinetics rather than thermodynamics. High resolution scanning transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy shows that the boron atom distribution in the hyperdoped nanoparticles is relatively uniform. The hyperdoped nanoparticles demonstrate tunable localized surface plasmon resonance (LSPR) and are stable in air for periods of at least one year. The hyperdoped nanoparticles are also stable upon annealing at temperatures up to 600 degrees C. Furthermore, boron hyperdoping does not change the diamond cubic crystal structure of silicon, as demonstrated in detail by high flux synchrotron X-ray diffraction and pair distribution function (PDF) analysis, supported by high-resolution TEM analysis.
机译:硅是最重要的半导体材料,其电子性能通过掺杂来控制。可通过超掺杂(即,掺杂至超过掺杂剂的标称平衡溶解度的浓度)来扩展可达到的性能范围。在此,超掺杂是在能够提供非平衡条件的激光热解反应器中实现的,其中掺杂由动力学而非热力学控制。带有能量色散X射线光谱的高分辨率扫描透射电子显微镜(TEM)表明,超掺杂纳米粒子中的硼原子分布相对均匀。超掺杂纳米粒子表现出可调节的局部表面等离子体共振(LSPR),并且在空气中稳定至少一年。超掺杂纳米粒子在高达600摄氏度的温度下退火时也很稳定。此外,硼超掺杂不会改变硅的金刚石立方晶体结构,如高通量同步加速器X射线衍射和成对分布函数(PDF)所证明的那样分析,高分辨率TEM分析支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号