首页> 外文期刊>Advanced Functional Materials >Optimization of Organic/Water Hybrid Electrolytes for High-Rate Carbon-Based Supercapacitor
【24h】

Optimization of Organic/Water Hybrid Electrolytes for High-Rate Carbon-Based Supercapacitor

机译:高速碳基超级电容器的有机/水杂化电解质的优化

获取原文
获取原文并翻译 | 示例
           

摘要

"Water-in-salt" (WIS) electrolytes with wide electrochemical stability windows (ESWs) have made a breakthrough in energy density of aqueous batteries and supercapacitors (SCs), but the sluggish ion diffusion limits their widespread application. Although the ion diffusion of WIS electrolytes can be improved by the addition of organic co-solvents, the effects of types and amounts of added organic solvents on the physicochemical properties of hybrid electrolytes are not clear. Here, the conductivity, ESW, and flammability of a series of hybrid electrolytes prepared by adding different organic solvents to a typical lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)-based WIS electrolyte are systematically studied. The results show that acetonitrile (ACN) is the best one to improve ion diffusion while maintaining high-level safety and wide ESW. Furthermore, a ternary phase diagram of LiTFSI/H2O/ACN is drawn to comprehensively show the relationship among the conductivity, flammability, and solubility of the hybrid electrolytes. According to the guidance of this phase diagram, an optimal hybrid electrolyte (LiTFSI/H2O/(ACN)(3.5)) is obtained, and the carbon-based symmetric SC using such hybrid electrolyte is able to fully work at 2.4 V with superior rate capability and excellent cycling stability over 40 000 cycles.
机译:具有宽的电化学稳定性窗口(ESW)的“盐包水”(WIS)电解质在水性电池和超级电容器(SC)的能量密度方面取得了突破,但是缓慢的离子扩散限制了它们的广泛应用。尽管可以通过添加有机助溶剂来改善WIS电解质的离子扩散,但是尚不清楚添加有机溶剂的类型和数量对混合电解质的理化性质的影响。在这里,系统地研究了通过向典型的双(三氟甲烷磺酰基)酰亚胺(LiTFSI)锂基WIS电解液中添加不同的有机溶剂而制备的一系列混合电解液的电导率,ESW和可燃性。结果表明,乙腈(ACN)是在保持高安全性和宽ESW的同时改善离子扩散的最佳方法。此外,绘制了LiTFSI / H2O / ACN的三元相图,以全面显示混合电解质的电导率,可燃性和溶解度之间的关系。根据该相图的指导,可获得最佳的混合电解质(LiTFSI / H2O /(ACN)(3.5)),使用该混合电解质的碳基对称SC能够在2.4 V电压下以优异的速率完全工作超过40 000次循环的能力和出色的循环稳定性。

著录项

  • 来源
    《Advanced Functional Materials》 |2019年第42期|1904136.1-1904136.8|共8页
  • 作者单位

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lab Clean Energy Chem & Mat Lanzhou 730000 Gansu Peoples R China|Anhui Univ Technol Minist Educ Key Lab Met Emiss Reduct & Resources Recycling Maanshan 243000 Peoples R China;

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lab Clean Energy Chem & Mat Lanzhou 730000 Gansu Peoples R China|Univ Chinese Acad Sci Ctr Mat Sci & Optoelect Engn Beijing 100080 Peoples R China;

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lab Clean Energy Chem & Mat Lanzhou 730000 Gansu Peoples R China|Lanzhou Univ Technol Dept Phys Sch Sci Lanzhou 730050 Gansu Peoples R China;

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lab Clean Energy Chem & Mat Lanzhou 730000 Gansu Peoples R China;

    Shanghai Univ Sch Mat Sci & Engn Shanghai 200444 Peoples R China;

    Anhui Univ Technol Minist Educ Key Lab Met Emiss Reduct & Resources Recycling Maanshan 243000 Peoples R China;

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lab Clean Energy Chem & Mat Lanzhou 730000 Gansu Peoples R China|Univ Chinese Acad Sci Ctr Mat Sci & Optoelect Engn Beijing 100080 Peoples R China|Chinese Acad Sci Dalian Inst Chem Phys Dalian Natl Lab Clean Energy Dalian 116000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electrochemical stable window; hybrid electrolytes; supercapacitors; ternary phase diagram;

    机译:电化学稳定窗口混合电解质;超级电容器三元相图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号