首页> 外文期刊>Advanced Functional Materials >Rational Engineering of Multilayered Co_3O_4/ZnO Nanocatalysts through Chemical Transformations from Matryoshka-Type ZIFs
【24h】

Rational Engineering of Multilayered Co_3O_4/ZnO Nanocatalysts through Chemical Transformations from Matryoshka-Type ZIFs

机译:通过Matryoshka型ZIF的化学转化合理设计多层Co_3O_4 / ZnO纳米催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid metal oxides with multilayered structures exhibit unique physical and chemical properties, particularly important to heterogeneous catalysis. However, regulations of morphology, spatial location, and shell numbers of the hybrid metal oxides still remain a challenge. Herein, binary Co3O4/ZnO nanocages with multilayered structures (up to eight layers) are prepared via chemical transformation from diverse Matryoshka-type zeolitic imidazolate frameworks (ZIFs) via a straightforward and scalable calcination method. More importantly, the obtained ZIF-derived metal oxides (ZDMOs) with versatile layer numbers exhibit remarkable catalytic activity for both gas-phase CO oxidation and CO2 hydrogenation reactions, which are directly related to the sophisticated shell numbers (i.e., Co3O4-terminated layers or ZnO-terminated layers). Particularly, in situ reflectance infrared Fourier transform spectroscopy (DRIFTS) results indicate that the promotional effects of the multilayered structures indeed exist in CO2 hydrogenation, wherein the key reaction intermediates are quite different for five-layer and six-layer ZDMOs. For instance, *HCOO is the predominant intermediate over the six-layer ZDMO; on the contrary, *H3CO is the crucial species over the five-layer ZDMO. The ZnO/Co3O4 interface should be the active sites for CO2 hydrogenation to *HCOO and *H3CO species, which are ultimately converted to the products (CH4 or methanol). Accordingly, the work here provides a convenient way to facilely engineer multilayered Co3O4/ZnO nanocomposites with precisely controlled shell numbers for heterogeneous catalysis applications.
机译:具有多层结构的杂化金属氧化物表现出独特的物理和化学性质,这对于非均相催化尤为重要。然而,杂化金属氧化物的形态,空间位置和壳数的规定仍然是挑战。本文中,通过直接且可扩展的煅烧方法,从各种Matryoshka型沸石咪唑酸盐骨架(ZIF)进行化学转化,制备了具有多层结构(最多八层)的二元Co3O4 / ZnO纳米笼。更重要的是,获得的具有通用层数的ZIF衍生金属氧化物(ZDMOs)对气相CO氧化和CO2加氢反应均显示出显着的催化活性,这与复杂的壳数直接相关(例如,以Co3O4终止的层或ZnO终止层)。特别地,原位反射红外傅里叶变换光谱法(DRIFTS)结果表明,多层结构的促进作用确实存在于CO2加氢中,其中五层和六层ZDMO的关键反应中间体完全不同。例如,* HCOO是六层ZDMO的主要中间体;相反,* H3CO是五层ZDMO上的关键物种。 ZnO / Co3O4界面应该是将CO2加氢为* HCOO和* H3CO物种的活性中心,最终将其转化为产物(CH4或甲醇)。因此,这里的工作提供了一种方便的方法,可以方便地工程化具有精确控制的壳数的多层Co3O4 / ZnO纳米复合材料,用于多相催化应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号