首页> 外文期刊>Advanced Functional Materials >Super Kinetically Pseudocapacitive MnCo_2S_4 Nanourchins toward High-Rate and Highly Stable Sodium-Ion Storage
【24h】

Super Kinetically Pseudocapacitive MnCo_2S_4 Nanourchins toward High-Rate and Highly Stable Sodium-Ion Storage

机译:超级动能伪电容性MnCo_2S_4纳米顽童向高速率和高度稳定的钠离子存储方向发展

获取原文
获取原文并翻译 | 示例
           

摘要

Improving surface morphology profiles, i.e., surface area and porosity, by nanostructure/surface engineering is effective in accommodating sodium's ionic and kinetic inadequacies. However, this strategy is limited to only activating the extrinsic pseudocapacitance in terms of improving surface-based reactions. Herein, it is aimed to improve the sodiation performance by enhancement from both intrinsic and extrinsic pseudocapacitance to maximize sodiation potential of materials. A rarely reported but highly functional spinel MnCo2S4 (MCS), is introduced and systematically analyzed using first-principles investigations, which exhibits energetically favorable charge-transfer states and strong Na-ions adsorption kinetics as well as diffusion channels (-3.65 and 0.40 eV respectively). The overall electrochemical redox profiles of the MCS nanostructure is revealed by in situ techniques, which disclose the commencing of partial and then a full conversion-type sodiation at low discharge potentials (0.52 V vs Na/Na+) with fast Na-ions diffusivity. Assisted by surface engineering technology on the intrinsically pseudocapacitive MCS, the urchin-like morphology is instrumental in boosting and realizing sodium storage performance, especially the surface capacitive behavior (from 73.4% to 94.1%), prolonged cycling stability (>800 cycles), and high-rate capability (416 mAh g(-1) at 10 A g(-1)), as well as exhibiting remarkable full cell capability (high rate at 2 A g(-1), >200 cycles at 200 mA g(-1)).
机译:通过纳米结构/表面工程来改善表面形态轮廓,即表面积和孔隙率,可有效地解决钠的离子和动力学不足。然而,就改善基于表面的反应而言,该策略限于仅激活外部假电容。在此,旨在通过增强内在和外在的假电容来提高材料的接合潜力,从而改善接合性能。引入了很少报道但功能强大的尖晶石MnCo2S4(MCS),并使用第一性原理进行了系统地分析,该方法显示出能量有利的电荷转移态和强大的Na离子吸附动力学以及扩散通道(分别为-3.65和0.40 eV )。通过原位技术揭示了MCS纳米结构的整体电化学氧化还原曲线,该技术揭示了在低放电电位(0.52 V vs Na / Na +)下具有快速的Na离子扩散性的部分转化然后完全转化的过程。借助表面工程技术在本质上为准电容MCS上的辅助作用,类海胆形态有助于提高和实现钠存储性能,尤其是表面电容行为(从73.4%到94.1%),延长的循环稳定性(> 800次循环)和高速率能力(在10 A g(-1)时为416 mAh g(-1)),并表现出显着的全电池容量(在2 A g(-1)时为高速率,在200 mA g(>下为200循环) -1))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号