首页> 外文期刊>Advanced Functional Materials >Exploiting Phonon-Resonant Near-Field Interaction for the Nanoscale Investigation of Extended Defects
【24h】

Exploiting Phonon-Resonant Near-Field Interaction for the Nanoscale Investigation of Extended Defects

机译:利用声子共振近场相互作用进行扩展缺陷的纳米级研究

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution of wide bandgap semiconductor materials has led to dramatic improvements for electronic applications at high powers and temperatures. However, the propensity of extended defects provides significant challenges for implementing these materials in commercial electronic and optical applications. While a range of spectroscopic and microscopic tools have been developed for identifying and characterizing these defects, such techniques typically offer either technique exclusively, and/or may be destructive. Scattering-type scanning near-field optical microscopy (s-SNOM) is a nondestructive method capable of simultaneously collecting topographic and spectroscopic information with frequency-independent nanoscale spatial precision (approximate to 20 nm). Here, how extended defects within 4H-SiC manifest in the infrared phonon response using s-SNOM is investigated and the response with UV-photoluminescence, secondary electron and electron channeling contrast imaging, and transmission electron microscopy is correlated. The s-SNOM technique identifies evidence of step-bunching, recombination-induced stacking faults, and threading screw dislocations, and demonstrates interaction of surface phonon polaritons with extended defects. The results demonstrate that phonon-enhanced infrared nanospectroscopy and spatial mapping via s-SNOM provide a complementary, nondestructive technique offering significant insights into extended defects within emerging semiconductor materials and devices and thus serves as an important diagnostic tool to help advance material growth efforts for electronic, photonic, phononic, and quantum optical applications.
机译:宽带隙半导体材料的发展已导致大功率和高温下电子应用的显着改进。然而,扩展缺陷的倾向为在商业电子和光学应用中实施这些材料提出了重大挑战。尽管已经开发了用于识别和表征这些缺陷的一系列光谱学和微观工具,但是这种技术通常仅提供一种技术和/或可能具有破坏性。散射型扫描近场光学显微镜(s-SNOM)是一种非破坏性方法,能够以与频率无关的纳米级空间精度(约20 nm)同时收集地形和光谱信息。在此,研究了如何使用s-SNOM在4H-SiC中扩展缺陷在红外声子响应中的表现,并与UV-光致发光,二次电子和电子通道对比成像以及透射电子显微镜的响应相关。 s-SNOM技术可识别出台阶状聚束,复合引起的堆垛层错和螺纹螺钉错位的迹象,并证明了表面声子极化子与扩展缺陷的相互作用。结果表明,声子增强型红外纳米光谱技术和通过s-SNOM进行的空间映射提供了一种互补的无损技术,可为新兴的半导体材料和器件中的扩展缺陷提供重要见识,因此可作为重要的诊断工具,帮助推动电子材料的发展,光子,声子和量子光学应用。

著录项

  • 来源
    《Advanced Functional Materials》 |2020年第10期|1907357.1-1907357.14|共14页
  • 作者

  • 作者单位

    Rhein Westfal TH Aachen Inst Phys IA D-52056 Aachen Germany;

    Vanderbilt Univ Dept Mech Engn 2400 Highland Ave Nashville TN 37212 USA|Oak Ridge Natl Lab Quantum Informat Sci Grp 1 Bethel Valley Rd Oak Ridge TN 37830 USA;

    US Naval Res Lab 4555 Overlook Ave SW Washington DC 20375 USA;

    McMaster Univ Dept Mat Sci & Engn Hamilton ON L8S 4L8 Canada;

    Vanderbilt Univ Dept Mech Engn 2400 Highland Ave Nashville TN 37212 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    extended defects; scanning near-field optical microscopy; silicon carbide; surface phonon polaritons; ultraviolet photoluminescence;

    机译:缺陷扩大;扫描近场光学显微镜;碳化硅表面声子极化子;紫外光致发光;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号