首页> 外文期刊>Advanced Functional Materials >Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate
【24h】

Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate

机译:钛酸锂镧的混合电子和离子导电性能

获取原文
获取原文并翻译 | 示例
           

摘要

With the continued increase in Li-metal anode rate capability, there is an equally important need to develop high-rate cathode architectures for solid-state batteries. A proposed method of improving charge transport in the cathode is introducing a mixed electronic and ionic conductor (MEIC) which can eliminate the need for conductive additives that occlude electrolyte-electrode interfaces and lower the net additive required in the cathode. This study takes advantage of a reduced perovskite electrolyte, Li0.33La0.57TiO3 (LLTO), to act as a model MEIC. It is found that the ionic conductivity of reduced LLTO is comparable to oxidized LLTO (sigma(bulk) = 10(-3)-10(-4) S cm(-1), sigma(GB) = 10(-5)-10(-6) S cm(-1)) and the electronic conductivity is 1 mS cm(-1). The ionic transference numbers are 0.9995 and 0.0095 in the oxidized and reduced state, respectively. Furthermore, two methods for controlling the transference numbers are evaluated. It is found that the electronic conductivity cannot easily be controlled by changing O-2 overpressures, but increasing the ionic conductivity can be achieved by increasing grain size. This work identifies a possible class of MEIC materials that may improve rate capabilities of cathodes in solid-state architectures and motivate a deeper understanding of MEICs in the context of solid-state batteries.
机译:随着锂金属阳极速率能力的不断提高,同样重要的是需要开发用于固态电池的高速率阴极架构。提出的改善阴极中电荷传输的方法是引入混合的电子和离子导体(MEIC),可以消除对堵塞电解质-电极界面并降低阴极所需净添加剂的导电添加剂的需求。这项研究利用减少的钙钛矿电解质Li0.33La0.57TiO3(LLTO)作为模型MEIC。发现还原的LLTO的离子电导率可与氧化的LLTO相比(sigma(bulk)= 10(-3)-10(-4)S cm(-1),sigma(GB)= 10(-5)- 10(-6)S cm(-1))和电子电导率是1 mS cm(-1)。在氧化态和还原态下的离子转移数分别为0.9995和0.0095。此外,评估了两种控制转移数的方法。已经发现,通过改变O-2过压不能容易地控制电子电导率,但是可以通过增加晶粒尺寸来增加离子电导率。这项工作确定了可能的一类MEIC材料,这些材料可以提高固态架构中阴极的倍率能力,并激发人们对固态电池背景下的MEIC的更深入了解。

著录项

  • 来源
    《Advanced Functional Materials》 |2020年第10期|1909140.1-1909140.9|共9页
  • 作者

  • 作者单位

    Univ Michigan Dept Mat Sci & Engn Ann Arbor MI 48109 USA;

    Solid Ion Consulting Seattle WA 98115 USA;

    Univ Michigan Dept Mat Sci & Engn Ann Arbor MI 48109 USA|Univ Michigan Dept Mech Engn Ann Arbor MI 48109 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    batteries; conductivity; electroceramics; electrolytes; LLTO;

    机译:电池;电导率电陶;电解质劳托;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号