首页> 外文期刊>Advanced Functional Materials >In Situ Formation of Li_3P Layer Enables Fast Li~+ Conduction across Li/Solid Polymer Electrolyte Interface
【24h】

In Situ Formation of Li_3P Layer Enables Fast Li~+ Conduction across Li/Solid Polymer Electrolyte Interface

机译:原位形成Li_3P层可以通过Li /固体聚合物电解质界面进行快速Li +传导

获取原文
获取原文并翻译 | 示例
           

摘要

Solid-state polymer electrolytes provide better flexibility and electrode contact than their ceramic counterparts, making them a worthwhile pursuit for all-solid-state lithium-metal batteries. However, their large Li/solid state electrolyte interfacial resistance, small critical current density, and rapid lithium dendrite growth during cycling still limit their viability. Owing to these restrictions, all-solid-state cells with solid polymer electrolytes must be cycled above room-temperature and with a small current density. These problems can be mitigated with an in situ formed artificial solid electrolyte interphase that rapidly conducts Li+ ions. Herein, a Li3P layer formed in situ at the Li-metal/solid polymer electrolyte interphase is reported that significantly reduces the electrode/electrolyte interfacial resistance. Additionally, this layer increases the wettability of the solid polymer by the metallic lithium anode, allowing for the critical current density of lithium symmetric cells to be doubled by homogenizing the current density at the interface. All-solid-state Li/Li symmetric cells and Li/LiFePO4 cells with the Li3P layer show improved cycling performance with a high current density.
机译:固态聚合物电解质提供比其陶瓷对应物更好的柔韧性和电极接触,使其成为全固态锂金属电池的有价值的追求。然而,它们在循环期间的大的Li /固态电解质界面电阻,小临界电流密度和快速锂枝晶生长仍然限制了它们的活力。由于这些限制,具有固体聚合物电解质的全固态细胞必须在室温高于室温并具有小的电流密度。这些问题可以通过易于形成Li +离子的原位形成的人工固体电解质相互作用来减轻。这里,报告了在Li-Mean /固体聚合物电解质相互作用的原位形成的Li3P层,显着降低了电极/电解质界面抗性。另外,该层通过金属锂阳极增加了固体聚合物的润湿性,允许通过均化界面处的电流密度使锂对称电池的临界电流密度加倍。所有固态Li / Li对称细胞和Li / LiFepo4细胞与Li3P层的细胞显示出具有高电流密度的改进的循环性能。

著录项

  • 来源
    《Advanced Functional Materials》 |2020年第22期|2000831.1-2000831.6|共6页
  • 作者单位

    Beijing Inst Technol Sch Mat Sci & Engn Beijing Key Lab Construct Tailorable Adv Funct Ma Beijing 100081 Peoples R China|Univ Texas Austin Mat Res Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst ETC9 184 Austin TX 78712 USA;

    Univ Texas Austin Mat Res Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst ETC9 184 Austin TX 78712 USA;

    Univ Texas Austin Mat Res Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst ETC9 184 Austin TX 78712 USA;

    South China Univ Technol Sch Chem & Chem Engn Key Lab Fuel Cell Technol Guangdong Prov Guangzhou 510641 Peoples R China;

    Univ Texas Austin Mat Res Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst ETC9 184 Austin TX 78712 USA;

    Univ Texas Austin Mat Res Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst ETC9 184 Austin TX 78712 USA;

    Univ Texas Austin Mat Res Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst ETC9 184 Austin TX 78712 USA;

    South China Univ Technol Sch Chem & Chem Engn Key Lab Fuel Cell Technol Guangdong Prov Guangzhou 510641 Peoples R China;

    Beijing Inst Technol Sch Mat Sci & Engn Beijing Key Lab Construct Tailorable Adv Funct Ma Beijing 100081 Peoples R China;

    Univ Texas Austin Mat Res Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst ETC9 184 Austin TX 78712 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    all-solid-state Li-metal batteries; black phosphorous; critical current density; interfacial resistance; local current density;

    机译:全固态LI金电池;黑色磷;临界电流密度;界面抵抗;局部电流密度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号