首页> 外文期刊>Advanced Functional Materials >Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures
【24h】

Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures

机译:用纳米碳和FTO纳米粒子异质结构提高等级芯/壳构造的碳纳米河/ 3D互连混合网的超快锂蓄能能力

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of the study involves accelerating ultrafast electrochemical behavior of lithium-ion batteries (LIBs) by proposing hierarchical core/shell heterostructure of carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine-doped tin oxide (FTO) nanoparticles (NPs) via a one-pot process of horizontal ultrasonic spray pyrolysis deposition. This is constructed via a pyrolysis reaction of ketjen black forming 3D interconnected FTO NPs covered with nanocarbon network on CNF. It offers fast electrical conductivity to the overall electrode with improved Li ion diffusion due to decreased size effect and relaxed structural variation of FTO NPs via nanocarbon network, leading to high discharge capacity (868.7 mAh g(-1)after 100 cycles) at 100 mA g(-1)and superior rate capability. Nevertheless, at extremely high current density (2000 mA g(-1)), significant ultrafast electrochemical performances with reversible discharge capacity (444.4 mAh g(-1)) and long-term cycling retention (89.9% after 500 cycles) are noted. This is attributed to the novel effects of 3D interconnected hybrid network accelerating receptive capacity of Li ions into the FTO NPs via nanocarbon network, delivery of formed Li ions and electrons by hybrid network with FTO NP and nanocarbon, and prevention of FTO NP pulverization from CNFs via nanocarbon network. Therefore, the proposed heterostructure holds significant promise for effective development of ultrafast anode material for enhancing the practical applications of LIBs.
机译:该研究的目的涉及通过用纳米碳和氟掺杂的氧化锡(FTO)纳米颗粒(NPS)提出碳纳米纤维(CNF)/ 3D互连的混合网(NPS )通过单罐水平超声波喷雾热解沉积。这是通过在CNF上覆盖有纳米碳网络覆盖的Ketjen黑色成型3D的热解反应的ketjen黑色成型的FTO NP。通过纳米碳网络的尺寸效应和FTO NPS的尺寸效应和放宽结构变化,引起了锂离子扩散的整个电极,为整个电极提供了快速的电导率,导致高放电容量(在100次循环之后的868.7mahg(-1) g(-1)和卓越的速率能力。然而,在极高的电流密度(2000 mA g(-1)),注意到具有可逆放电容量的显着超快电化学性能(444.4mahg(-1))和长期循环保留(500次循环后89.9%)。这归因于通过纳米碳网络将Li离子的3D互连混合网络加速到FTO NPS中的接受容量的新颖效果,通过具有FTO NP和纳米氧化物的杂种网和杂交网的形成的Li离子和电子,并从CNFS预防FTO NP粉碎通过纳米碳网络。因此,该拟议的异质结构对超快阳极材料的有效开发来提高LIBS的实际应用。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号