首页> 外文期刊>Advanced Functional Materials >Antisite Defect-Enhanced Thermoelectric Performance of Topological Crystalline Insulators
【24h】

Antisite Defect-Enhanced Thermoelectric Performance of Topological Crystalline Insulators

机译:拓扑结晶绝缘子的防铠缺陷增强的热电性能

获取原文
获取原文并翻译 | 示例
           

摘要

As the first experimentally established topological crystalline insulator (TCI), SnTe also exhibits superior thermoelectricity upon proper doping; yet to date, whether such doping will preserve or destroy the salient topological properties in achieving outstanding thermoelectric (TE) performance remains elusive. Using first-principles calculations combined with Boltzmann transport theory, here the elegant role of antisite defect in optimally enhancing the thermopower of SnTe while simultaneously preserving its topological nature is uncovered. It is first shown that Sn(Te)antisite defect effectively induces pronounced variations in the low-energy density of states rather than rigidly shifting the chemical potential, resulting in a higher Seebeck coefficient and power factor. Next, it is demonstrated that in a wide temperature range, the Seebeck coefficient of antisite-doped SnTe distinctly outperforms previously identified systems invoking extrinsic dopants. It is further confirmed that such intrinsic antisite doping preserves the nontrivial topology, which in turn favors high electrical conductivity and thermoelectricity. These central findings not only identify an effective and powerful knob in future studies of TE materials, but also help to resolve standing controversies between theory and experiment surrounding the TE performances of both TCIs and topological insulators.
机译:作为第一实验建立的拓扑结晶绝缘体(TCI),SNTE在适当掺杂时也表现出优异的热电;然而迄今为止,这种兴奋剂是否会保护或破坏实现优异的热电(TE)性能的突出拓扑特性仍然难以捉摸。使用一致性的计算结合Boltzmann运输理论,这里揭示了在同时保持其拓扑性质的同时保持SNTE的热电驱作用缺陷的优雅作用。首先表明SN(TE)防铠缺陷有效地诱导状态低能量密度的明显变化,而不是刚性地移动化学势,导致塞贝克系数和功率因数更高。接下来,证明在宽温度范围内,偏见掺杂的SNTE的塞贝克系数明显优于先前识别的系统调用外部掺杂剂的系统。进一步证实,这种内在的防铠掺杂保留了非动力拓扑,这反过来又具有高导电性和热电。这些中央发现不仅在TE材料的未来研究中识别有效和强大的旋钮,还有助于解决理论与实验之间的常设争议,周围围绕TCIS和拓扑绝缘体的TE表演。

著录项

  • 来源
    《Advanced Functional Materials》 |2020年第35期|2003162.1-2003162.7|共7页
  • 作者单位

    Univ Sci & Technol China Int Ctr Quantum Design Funct Mat ICQD Hefei Natl Lab Phys Sci Microscale HFNL Hefei 230026 Anhui Peoples R China|Univ Sci & Technol China CAS Ctr Excellence Quantum Informat & Quantum Phy Hefei 230026 Anhui Peoples R China|Southern Univ Sci & Technol Dept Phys Shenzhen Key Lab Thermoelect Mat Shenzhen 518055 Peoples R China;

    Univ Sci & Technol China Int Ctr Quantum Design Funct Mat ICQD Hefei Natl Lab Phys Sci Microscale HFNL Hefei 230026 Anhui Peoples R China|Univ Sci & Technol China CAS Ctr Excellence Quantum Informat & Quantum Phy Hefei 230026 Anhui Peoples R China;

    Univ Sci & Technol China Int Ctr Quantum Design Funct Mat ICQD Hefei Natl Lab Phys Sci Microscale HFNL Hefei 230026 Anhui Peoples R China|Univ Sci & Technol China CAS Ctr Excellence Quantum Informat & Quantum Phy Hefei 230026 Anhui Peoples R China|Univ Sci & Technol China Sch Phys Sci Chinese Acad Sci Key Lab Strongly Coupled Quantum Matter Phys Hefei 230026 Anhui Peoples R China;

    Southern Univ Sci & Technol Dept Phys Shenzhen Key Lab Thermoelect Mat Shenzhen 518055 Peoples R China;

    Univ Sci & Technol China Int Ctr Quantum Design Funct Mat ICQD Hefei Natl Lab Phys Sci Microscale HFNL Hefei 230026 Anhui Peoples R China|Univ Sci & Technol China CAS Ctr Excellence Quantum Informat & Quantum Phy Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    band engineering; DFT calculations; intrinsic defects; thermoelectric performance; topological crystalline insulator;

    机译:乐队工程;DFT计算;内在缺陷;热电性能;拓扑结晶绝缘体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号