首页> 外文期刊>Advanced Functional Materials >Deciphering, Designing, and Realizing Self-Folding Biomimetic Microstructures Using a Mass-Spring Model and Inkjet-Printed, Self-Folding Hydrogels
【24h】

Deciphering, Designing, and Realizing Self-Folding Biomimetic Microstructures Using a Mass-Spring Model and Inkjet-Printed, Self-Folding Hydrogels

机译:使用质量弹簧模型和喷墨印刷,自折叠水凝胶来解密,设计和实现自折叠仿生微观结构

获取原文
获取原文并翻译 | 示例
           

摘要

Flat, organic microstructures that can self-fold into 3D microstructures are promising for tissue regeneration, for being capable of distributing living cells in 3D while forming highly complex, biomimetic architectures to assist cells in performing regeneration. However, the design of self-folding microstructures is difficult due to a lack of understanding of the underlying formation mechanisms. This study helps bridge this gap by deciphering the dynamics of the self-folding using a mass-spring model. This numerical study reveals that self-folding procedure is multi-modal, which can become random and unpredictable by involving the interplays between internal stresses, external stimulation, imperfection, and self-hindrance of the folding body. To verify the numerical results, bilayered, hydrogel-based micropatterns capable of self-folding are fabricated using inkjet-printing and tested. The experimental and numerical results are consistent with each other. The above knowledge is applied to designing and fabricating self-folding microstructures for tissue-engineering, which successfully creates 3D, cell-scaled, and biomimetic microstructures, such as microtubes, branched microtubes, and hollow spheres. Embedded in self-folded microtubes, human mesenchymal stem cells proliferate and form linear cell-organization mimicking the cell morphology in muscles and tendons. The above knowledge and study platforms can greatly contribute to the research on self-folding microstructures and applications to tissue regeneration.
机译:可以自折叠到3D微结构的平面,有机微观结构是对组织再生的承诺,用于在形成高度复杂的仿生架构的同时能够在3D中分配活细胞以帮助细胞进行再生细胞。然而,由于对底层形成机制缺乏了解,难以折叠微结构的设计。本研究通过使用质量弹簧模型解密自折叠的动态来帮助桥接该差距。该数值研究表明,通过涉及折叠体的内部应力,外部刺激,缺陷和自我阻碍的相互作用,自折叠程序是多模态的多模态,这可能变得随机和不可预测。为了验证数值结果,使用喷墨印刷和测试,制造能够自折叠的双层的水凝胶基微大图。实验和数值结果彼此一致。上述知识应用于设计和制造用于组织工程的自折叠微观结构,该组织工程成功地产生3D,细胞缩放和仿生微粒体,例如微管,支链微管和空心球。嵌入自折叠的微管中,人间充质干细胞增殖并形成线性细胞组织,以模仿肌肉和肌腱中的细胞形态。上述知识和学习平台可以大大有助于对自折叠微观结构和应用于组织再生的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号