首页> 外文期刊>Advanced Functional Materials >Tailoring Wetting Properties at Extremes States to Obtain Antifogging Functionality
【24h】

Tailoring Wetting Properties at Extremes States to Obtain Antifogging Functionality

机译:极端状态剪裁润湿性质,以获得防雾功能

获取原文
获取原文并翻译 | 示例
           

摘要

Fog formation decreases light transmission of optically clear materials. A promising approach to address this problem is to control the wetting properties of the material at extremes states, which requires imparting micro and nano morphology features on the surface. However, such features may affect the optical properties of the surface. In this work, superhydrophobic and superhydrophilic surfaces, with different morphology characteristics ranging from nanoscale to hierarchical micro-nanoscale are fabricated and evaluated in order to investigate which wetting extreme and surface morphology is more suitable to preserve the light-transmitting properties and exhibit antifogging functionalities. The performance of the aforementioned surfaces is compared for the first time in two different testing modes: under intense fog flow and no surface cooling, and under no-flow and surface cooling, which enhances dew condensation on the surfaces. It is demonstrated that superhydrophilic surfaces with nanoscale morphology maintain their optical transmittance under fog flow for more than 20 min. This duration is one of the longest reported in the literature revealing the long-term antifogging functionality of the proposed surfaces. Finally, by tailoring the morphology and the surface wetting properties, an optically switching surface (initially "milky" which becomes "clear") when exposed to humidity is demonstrated.
机译:雾形成降低光学透明材料的光传输。一种有希望的解决该问题的方法是控制极端状态的材料的润湿性质,这需要在表面上赋予微型和纳米形态特征。然而,这些特征可能影响表面的光学性质。在该工作中,具有不同形态学特性的超疏水和超嗜含量,纳米级微纳米级的不同形态学特性是制造和评估的,以研究哪种润湿的极端和表面形态更适合于保持透光性能并表现出抗雾功能。在两种不同的测试模式下首次比较上述表面的性能:在强烈的雾流下,没有表面冷却,并且在无流动和表面冷却下,这增强了表面上的露凝块。证明,具有纳米级形态的过硫基表面在雾流下保持其光学透射率超过20分钟。该持续时间是文献中最长报告的,揭示了所提出的表面的长期抗雾功能。最后,通过定制形态和表面润湿性能,在曝光到湿度时,光学切换表面(最初“乳状”变为“透明”)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号