首页> 外文期刊>Advanced Functional Materials >Physical Unclonable Anticounterfeiting Electrodes Enabled by Spontaneously Formed Plasmonic Core-Shell Nanoparticles for Traceable Electronics
【24h】

Physical Unclonable Anticounterfeiting Electrodes Enabled by Spontaneously Formed Plasmonic Core-Shell Nanoparticles for Traceable Electronics

机译:用于可追溯电子的自发形成等离子体壳纳米粒子的物理不可渗透的抗抵抗电极

获取原文
获取原文并翻译 | 示例
           

摘要

Counterfeit electronics are a growing problem for the electronic information industry worldwide, so developing unbreakable security tags is crucial to ensure the trustworthiness and traceability of electronics. Traditional anticounterfeiting and trace solutions rely on reproducible deterministic processes and additional labels, which can still be copied or faked by counterfeiters. Herein, physical unclonable functions enabled by spontaneously formed plasmonic core-shell nanoparticles on electrodes are proposed to ensure label-free traceable electronics, giving a practical solution to fight against counterfeit electronics. Random hemispherical core-shell nanoparticles are intentionally introduced on the metal electrode of different semiconductors (Si, GaAs, and GaN) from Ni/Au bilayer heterofilms by rapid thermal annealing, which can be integrated with electronics seamlessly, with no negative effect on electrical properties. The position, size, and shape of nanoparticles are random and uncontrollable; the corresponding scattering patterns, intensity, and spectra can work as nanofingerprints of the electrode, proving multidimensional unclonable labels with large encoding capacity suitable for electrodes smaller than several micrometers. It can be further combined with machine vision and artificial intelligence to identify and track electronics automatically and efficiently. The anticounterfeiting electrodes also show good thermal robustness and mechanical stability, opening up a prospect for practical anticounterfeiting of electronics.
机译:假冒电子产品是全世界电子信息产业日益增长的问题,因此开发不可用的安全标签对于确保电子产品的可信度和可追溯性至关重要。传统的抗抵抗和跟踪解决方案依赖于可重复的确定性过程和其他标签,仍然可以被造型器复制或伪造。这里,提出了通过在电极上自发形成的等离子体芯壳纳米粒子而启用的物理不可渗透功能,以确保可自由标记的可追溯电子器件,为防伪电子产品进行抗击,提供了一种实用的解决方案。通过快速的热退火,有意地将随机半球形核 - 壳纳米颗粒从Ni / Au Bilayer杂散的不同半导体(Si,GaAs和GaN)的金属电极上引入,这可以无缝地与电子集成,对电性能没有负面影响。纳米颗粒的位置,尺寸和形状是随机和无法控制的;相应的散射图案,强度和光谱可以作为电极的纳米夹夹,证明具有适用于小于几微米的电极的大编码容量的多维不可渗透标记。它可以进一步与机器视觉和人工智能相结合,以自动和高效地识别和跟踪电子产品。抗抵抗电极也显示出良好的热稳健性和机械稳定性,开辟了实际抛弃电子产品的前景。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第18期|2010537.1-2010537.10|共10页
  • 作者单位

    China Acad Engn Phys Microsyst & Terahertz Res Ctr 596 Yin He Rd Chengdu 610200 Peoples R China|China Acad Engn Phys Inst Elect Engn 64 Mianshan Rd Mianyang 621999 Sichuan Peoples R China;

    China Acad Engn Phys Microsyst & Terahertz Res Ctr 596 Yin He Rd Chengdu 610200 Peoples R China|China Acad Engn Phys Inst Elect Engn 64 Mianshan Rd Mianyang 621999 Sichuan Peoples R China;

    China Acad Engn Phys Microsyst & Terahertz Res Ctr 596 Yin He Rd Chengdu 610200 Peoples R China|China Acad Engn Phys Inst Elect Engn 64 Mianshan Rd Mianyang 621999 Sichuan Peoples R China;

    China Acad Engn Phys Microsyst & Terahertz Res Ctr 596 Yin He Rd Chengdu 610200 Peoples R China|China Acad Engn Phys Inst Elect Engn 64 Mianshan Rd Mianyang 621999 Sichuan Peoples R China;

    China Acad Engn Phys Microsyst & Terahertz Res Ctr 596 Yin He Rd Chengdu 610200 Peoples R China|China Acad Engn Phys Inst Elect Engn 64 Mianshan Rd Mianyang 621999 Sichuan Peoples R China;

    China Acad Engn Phys Microsyst & Terahertz Res Ctr 596 Yin He Rd Chengdu 610200 Peoples R China|China Acad Engn Phys Inst Elect Engn 64 Mianshan Rd Mianyang 621999 Sichuan Peoples R China;

    Sichuan Univ Coll Phys Chengdu 610065 Peoples R China;

    Sichuan Univ Coll Phys Chengdu 610065 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    anticounterfeiting; nanoparticles; physically unclonable functions; plasmonics; traceable electronics;

    机译:射击率;纳米颗粒;物理上不可渗透的功能;血浆;可追踪电子产品;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号