首页> 外文期刊>Advanced Functional Materials >Low Resistance and High Stable Solid-Liquid Electrolyte Interphases Enable High-Voltage Solid-State Lithium Metal Batteries
【24h】

Low Resistance and High Stable Solid-Liquid Electrolyte Interphases Enable High-Voltage Solid-State Lithium Metal Batteries

机译:低电阻和高稳定的固液电解质互连使高压固态锂金属电池

获取原文
获取原文并翻译 | 示例
           

摘要

Solid-state batteries (SSBs) with addition of liquid electrolytes are considered to possibly replace the current lithium-ion batteries (LIBs) because they combine the advantages of benign interfacial contact and strong barriers for unwanted redox shuttles. However, solid electrolyte and liquid electrolyte are generally (electro)-chemically incompatible and the resistance of the newly formed solid-liquid electrolyte interphase (SLEI) appears as an additional contribution to the overall battery resistance. Herein, a boron, fluorine-donating liquid electrolyte (B, F-LE) is introduced into the interface between the high-voltage cathode and ultrathin composite solid electrolyte (CSE), which is fabricated by adhering a high content of nanosized Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), to generate a low resistance and high stable SLEI in situ, giving a stable high-voltage output with a reinforced cathode|CSE interface. B, F-LE, consisting of a highly fluorinated electrolyte with a lithium bis(oxalato)borate additive, exhibits good chemical compatibility with CSE and enables rapid and uniform transportation of Li+, with its electrochemically and chemically stable interface for high-voltage cathode. Eventually, the B, F-LE assisted LiNi0.6Co0.2Mn0.2O2|Li battery displays the enhanced rate capability and high voltage cycling stability. The findings provide an interfacial engineering strategy to turn SLEI from a "real culprit" into the "savior" that may pave a brand-new way to manipulate SLEI chemistry in hybrid solid-liquid devices.
机译:通过添加液体电解质的固态电池(SSBs)被认为是可能更换当前锂离子电池(Libs),因为它们结合了良性界面接触的优点和对不需要的氧化还原梭子的强屏障。然而,固体电解质和液体电解质通常(电镀) - 化学上不相容,并且新形成的固体 - 液体电解质相互关节(Slei)的电阻看起来作为对整体电池电阻的额外贡献。在此,将硼,将氟化液电解质(B,F-Le)引入高压阴极和超薄复合固体电解质(CSE)之间的界面中,通过粘附高含量的纳米化Li6.4La3zR1而制造.4TA0.6O12(LLZTO)与聚(偏二氟乙烯 - 共六氟丙烯)(PVDF-HFP),原位产生低电阻和高稳定的单反流度,具有稳定的高压输出,具有增强的阴极界面。 B,F-Le,由硼酸锂添加剂的高氟化电解质组成,具有与CSE的良好的化学相容性,并能够快速且均匀地运输Li +,其电化学和化学稳定的高压阴极界面。最终,B,F-LE辅助LINI0.6CO0.2MN0.2O2 | LI电池显示增强的速率能力和高压循环稳定性。该研究结果提供了一个界面工程战略,将Slei从“真正的罪魁祸首”转变为“救世主”,这可能会铺平全新的方式在混合固体液体装置中操纵流转化学。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第20期|2010611.1-2010611.10|共10页
  • 作者单位

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Changchun Inst Appl Chem Chinese Acad Sci State Key Lab Electroanalyt Chem Changchun 130022 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

    Northeast Normal Univ Dept Chem Natl & Local United Engn Lab Power Battery Changchun 130024 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cathode#8211; solid electrolyte interface; electrochemistry; high voltage; solid#8211; liquid electrolyte interphase; solid#8208; state batteries;

    机译:阴极–固体电解质界面;电化学;高电压;固体–液体电解质相互作用;固体‐国家电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号