首页> 外文期刊>Advanced Functional Materials >3D Porous Oxidation-Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High-Performance Supercapacitors
【24h】

3D Porous Oxidation-Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High-Performance Supercapacitors

机译:通过原位锌模板对高性能超级电容器诱导的3D多孔氧化抗MXENE /石墨烯架构

获取原文
获取原文并翻译 | 示例
           

摘要

2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face-to-face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self-restacking of MXene, an efficient and fast self-assembly route to prepare a 3D porous oxidation-resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self-assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG-5 electrode possesses a striking specific capacitance of 393 F g(-1), superb rate performance (32.7% at 10 V s(-1)), and outstanding cycling stability. Furthermore, the as-assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg(-1) and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long-standing significant challenges of MXene in the future.
机译:2D MXENE材料在储能施用中引起了密集的关注。然而,MXENE通常经历严重面对面的折叠和劣质稳定性,显着防止其进一步的商业应用。在此,为了抑制M烯烃的氧化和自重接线,在诸如原位牺牲金属锌模板的辅助下,有效和快速的自组装途径以制备3D多孔抗氧化偏移偏移(PMG)复合材料。自组装的3D多孔结构可以有效地防止蒙薄层的氧化在室温下在空气中没有明显的变化,在室温下在室温下在两个月后,保证电解离子的优异导电性和丰富的电化学活性位点。因此,PMG-5电极具有393V(-1)的醒目特定电容,速率性能极高(在10V S(-1)下32.7%),并且具有出色的循环稳定性。此外,组装的不对称超级电容器具有50.8WH kg(-1)的明显能量密度,并且具有显着的循环稳定性,在10 000个循环后的特定电容的劣化4.3%。这项工作铺设了一个新的途径来解决未来MXENE的两个长期挑战。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第20期|2101087.1-2101087.11|共11页
  • 作者单位

    Harbin Engn Univ Coll Mat Sci & Chem Engn Minist Educ Key Lab Superlight Mat & Surface Technol Harbin 150001 Peoples R China;

    Harbin Engn Univ Coll Mat Sci & Chem Engn Minist Educ Key Lab Superlight Mat & Surface Technol Harbin 150001 Peoples R China;

    Harbin Engn Univ Coll Mat Sci & Chem Engn Minist Educ Key Lab Superlight Mat & Surface Technol Harbin 150001 Peoples R China;

    Harbin Engn Univ Coll Mat Sci & Chem Engn Minist Educ Key Lab Superlight Mat & Surface Technol Harbin 150001 Peoples R China;

    Harbin Engn Univ Coll Mat Sci & Chem Engn Minist Educ Key Lab Superlight Mat & Surface Technol Harbin 150001 Peoples R China;

    Harbin Engn Univ Coll Mat Sci & Chem Engn Minist Educ Key Lab Superlight Mat & Surface Technol Harbin 150001 Peoples R China;

    Harbin Engn Univ Coll Mat Sci & Chem Engn Minist Educ Key Lab Superlight Mat & Surface Technol Harbin 150001 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    graphene; MXene; self-assembly; specific capacitance; supercapacitors;

    机译:石墨烯;MXENE;自组装;特定电容;超级电容器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号