...
首页> 外文期刊>Advanced Functional Materials >Vapor Transport Deposition of Highly Efficient Sb_2(S,Se)_3 Solar Cells via Controllable Orientation Growth
【24h】

Vapor Transport Deposition of Highly Efficient Sb_2(S,Se)_3 Solar Cells via Controllable Orientation Growth

机译:通过可控取向生长蒸汽传输高效SB_2(S,SE)_3太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

The vapor transport deposition of quasi-one-dimensional antimony selenosulfide (Sb-2(S,Se)(3)) has recently attracted increasing research interest for the inexpensive, high-throughput production of thin film photovoltaic devices. Further improvements in Sb-2(S,Se)(3) solar cell performance urgently require the identification of processing strategies to control the orientation, however the growth mechanism of high quality absorbers is still not completely clear. Herein, a facile and general vapor transport deposition approach to precisely control the growth of large-grained dense Sb-2(S,Se)(3) films with good crystallization and preferred orientation via the source vapor speed is utilized. It is found that defect activation energy rather than the defect concentration plays a decisive role in the Sb-2(S,Se)(3) photovoltaic performance. Admittance spectroscopy analysis is used to obtain efficient Sb-2(S,Se)(3) solar cells. By employing dual-source coordinations to optimize the absorber layer a power conversion efficiency of 8.17% is obtained which is the highest efficiency for Sb-2(S,Se)(3) solar cells fabricated by vapor transport technology. This study suggests that there are other opportunities for gaining deeper a understanding of the defect physics and carrier recombination mechanisms in other highly oriented low-dimensional materials to achieve improved device performance.
机译:准一维锑硫化物的蒸汽传输沉积(SB-2(SSE)(3))最近吸引了薄膜光伏器件的廉价,高通量生产的额外研究兴趣。 SB-2(SE,SE)(3)太阳能电池性能的进一步改善迫切需要识别加工策略以控制取向,但高质量吸收剂的生长机制仍然没有完全清楚。这里,利用良好地控制具有良好结晶和优选取向的大颗粒致密Sb-2(3)膜的生长的容易和一般的蒸汽传输沉积方法。发现缺陷激活能量而不是缺陷浓度在SB-2(S SE)(3)光伏性能中起着决定性作用。准入光谱分析分析用于获得有效的SB-2(S,SE)(3)太阳能电池。通过采用双源协调来优化吸收层,获得8.17%的功率转换效率,其是由蒸汽运输技术制造的SB-2(SE)(3)太阳能电池的最高效率。本研究表明,在其他高度导向的低维材料中,更多地获得对缺陷物理和载体重组机制的理解,以实现改善的装置性能。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第28期|2101476.1-2101476.9|共9页
  • 作者单位

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

    East China Normal Univ Dept Elect Engn Shanghai 200241 Peoples R China;

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

    East China Normal Univ Dept Elect Engn Shanghai 200241 Peoples R China;

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

    East China Normal Univ Dept Elect Engn Shanghai 200241 Peoples R China;

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

    East China Normal Univ Engn Res Ctr Nanophoton & Adv Instrument Key Lab Polar Mat & Devices Sch Phys & Elect Sci Minist Educ Shanghai 200241 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    defect activation energy; high-efficiency; Sb; (2)(S; Se); (3) solar cells; vapor transport deposition;

    机译:缺陷激活能量;高效;SB;(2)(S;SE);(3)太阳能电池;蒸汽运输沉积;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号