首页> 外文期刊>Advanced Functional Materials >Regulating Ag Wettability via Modulating Surface Stoichiometry of ZnO Substrates for Flexible Electronics
【24h】

Regulating Ag Wettability via Modulating Surface Stoichiometry of ZnO Substrates for Flexible Electronics

机译:通过调节ZnO基板的表面化学计量来调节AG润湿性,用于柔性电子器件

获取原文
获取原文并翻译 | 示例
           

摘要

A novel and highly efficient methodology to regulate (enhance or suppress) the Volmer-Weber 3D growth mode of ultra-thin (10 nm) Ag layers by modulating the surface stoichiometry of ZnO substrates prior to Ag deposition is presented. Relative to pristine ZnO layers, oxygen-deficient surface states formed by preferential removal of surface oxygen atoms remarkably improve Ag layer wettability, whereas oxygen-excessive surface states formed by oxygen atom incorporation strongly facilitate Ag agglomeration. The dissimilar nucleation and coalescence dynamics are elucidated via combined molecular dynamics and force-bias Monte Carlo simulations. The improved wettability results in significantly lower sheet resistance in the ultra-thin (6-10 nm) Ag layers, for example, 6.03 omega sq(-1) at 8 nm, than the previously reported values from numerous other approaches in the equal thickness range. When this unique methodology is applied to ZnO/Ag/ZnO transparent electrodes, simultaneous improvement in electrical conductivity and visible transparency is realized, with a resultant Haacke figure of merit value of 0.139 omega(-1) that is 50% higher than the best reported value for an identically structured electrode. We select transparent heating devices as a model system to confirm that the superior optoelectronic properties are highly sustainable under simultaneous and severe electrical, mechanical, and thermal stresses.
机译:通过调节ZnO沉积在Ag沉积之前,通过调节ZnO底物的表面化学计量来调节(增强或抑制)的新颖和高效的方法。相对于原始的ZnO层,通过优先除去表面氧原子而形成的缺氧表面状态显着提高Ag层润湿性,而通过氧原子掺入形成的氧过量表面状态强烈促进Ag凝聚。通过组合的分子动力学和力 - 偏置蒙特卡罗模拟阐明不同的成核和聚结动力学。改进的润湿性导致超薄(6-10nm)Ag层中的显着降低的薄层电阻,例如8nm处的6.03ωsq(-1),而是先前报道的来自诸如等厚度的许多其他方法的值范围。当这种独特的方法应用于ZnO / Ag / ZnO透明电极时,实现了导电性和可见透明度的同时改善,得到的Laacke的优异值为0.139ω(-1),其值高于50%最佳报告的相同结构的电极。我们选择透明的加热装置作为模型系统,以确认在同时和严重的电气,机械和热应力下高级光电性能高度可持续。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号