首页> 外文期刊>Advanced Functional Materials >Amino Acid-Induced Interface Charge Engineering Enables Highly Reversible Zn Anode
【24h】

Amino Acid-Induced Interface Charge Engineering Enables Highly Reversible Zn Anode

机译:氨基酸诱导的界面电荷工程可实现高度可逆的Zn阳极

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the impressive merits of low-cost and high-safety electrochemical energy storage for aqueous zinc ion batteries, researchers have long struggled against the unresolved issues of dendrite growth and the side reactions of zinc metal anodes. Herein, a new strategy of zinc-electrolyte interface charge engineering induced by amino acid additives is demonstrated for highly reversible zinc plating/stripping. Through electrostatic preferential absorption of positively charged arginine molecules on the surface of the zinc metal anode, a self-adaptive zinc-electrolyte interface is established for the inhibition of water adsorption/hydrogen evolution and the guidance of uniform zinc deposition. Consequently, an ultra-long stable cycling up to 2200 h at a high current density of 5 mA cm(-2) is achieved under an areal capacity of 4 mAh cm(-2). Even cycled at an ultra-high current density of 10 mA cm(-2), 900 h-long stable cycling is still demonstrated, demonstrating the reliable self-adaptive feature of the zinc-electrolyte interface. This work provides a new perspective of interface charge engineering in realizing highly reversible bulk zinc anode that can prompt its practical application in aqueous rechargeable zinc batteries.
机译:尽管锌离子电池水溶性低成本和高安全性的电化学储存的令人印象深刻,但研究人员长期以来对硫酸锌生长的未解决问题和锌金属阳极的副反应进行挣扎。这里,对高度可逆的锌电镀/汽提进行了氨基酸添加剂诱导的锌电解质界面电荷工程的新策略。通过在锌金属阳极表面上的带正电荷的精氨酸分子的静电优先吸收,建立自适应锌电解质界面,用于抑制水吸附/氢气进化和均匀锌沉积的引导。因此,在4mAhcm(-2)的面积容量下,实现高达2200小时的超长稳定循环高达2200小时的循环。甚至在10 mA cm(-2)的超高电流密度下均匀循环,仍然证明了900个H长的循环,证明了锌电解质界面的可靠自适应特征。这项工作提供了界面电荷工程的新视角,实现了高度可逆的散装锌阳极,可以促进其在可充电锌电池水溶液中的实际应用。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第45期|2103514.1-2103514.9|共9页
  • 作者单位

    Zhejiang Univ Sch Mat Sci & Engn State Key Lab Clean Energy Utilizat ZJU Hangzhou Global Sci & Technol Innovat Ctr Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mat Sci & Engn State Key Lab Clean Energy Utilizat ZJU Hangzhou Global Sci & Technol Innovat Ctr Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mat Sci & Engn State Key Lab Clean Energy Utilizat ZJU Hangzhou Global Sci & Technol Innovat Ctr Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mat Sci & Engn State Key Lab Clean Energy Utilizat ZJU Hangzhou Global Sci & Technol Innovat Ctr Hangzhou 310027 Peoples R China;

    Zhejiang Univ Zhejiang Prov Key Lab Quantum Technol & Device Dept Phys Hangzhou 310027 Peoples R China;

    Northumbria Univ Mech & Construct Engn Fac Engn & Environm Newcastle Upon Tyne NE1 8ST Tyne & Wear England;

    Xian Technol Univ Inst Sci & Technol New Energy Xian 710021 Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Engn Zhejiang Prov Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mat Sci & Engn State Key Lab Clean Energy Utilizat ZJU Hangzhou Global Sci & Technol Innovat Ctr Hangzhou 310027 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    amino acid additives; aqueous rechargeable zinc batteries; cycling stability; interface charge engineering; zinc anodes;

    机译:氨基酸添加剂;水性可充电锌电池;循环稳定性;界面电荷工程;锌阳极;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号