首页> 外文期刊>Advanced Functional Materials >Understanding Thermal and A-Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes
【24h】

Understanding Thermal and A-Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes

机译:了解卤化卤化铅钙质的热和A热捕获过程朝向有效的辐射检测方案

获取原文
获取原文并翻译 | 示例
           

摘要

Lead halide perovskites (LHP) are rapidly emerging as efficient, low-cost, solution-processable scintillators for radiation detection. Carrier trapping is arguably the most critical limitation to the scintillation performance. Nonetheless, no clear picture of the trapping and detrapping mechanisms to/from shallow and deep trap states involved in the scintillation process has been reported to date, as well as on the role of the material dimensionality. Here, this issue is addressed by performing, for the first time, a comprehensive study using radioluminescence and photoluminescence measurements side-by-side to thermally-stimulated luminescence (TSL) and afterglow experiments on CsPbBr3 with increasing dimensionality, namely nanocubes, nanowires, nanosheets, and bulk crystals. All systems are found to be affected by shallow defects resulting in delayed intragap emission following detrapping via a-thermal tunneling. TSL further reveals the existence of additional temperature-activated detrapping pathways from deeper trap states, whose effect grows with the material dimensionality, becoming the dominant process in bulk crystals. These results highlight that, compared to massive solids where the suppression of both deep and shallow defects is critical, low dimensional nanostructures are more promising active materials for LHP scintillators, provided that their integration in functional devices meets efficient surface engineering.
机译:卤化铅钙钛矿(LHP)正迅速成为高效率,低成本,可溶液加工的闪烁体放射线检测。载流子俘获无疑是对闪烁性能的最关键的限制。尽管如此,俘获的,没有清晰的画面脱阱机制,由浅及参与闪烁过程中深陷阱能级/已报告的日期,以及对材料维度的作用。在这里,这个问题已通过,首次使用的辐射发光和光致发光测量并排侧到热释光(TSL)的综合研究和余辉在CsPbBr3实验随维数,即纳米立方体,纳米线,纳米片解决和块状晶体。发现所有系统通过产生延迟intragap发射以下通过热隧穿脱阱浅缺陷的影响。 TSL进一步揭示的额外温度活化脱阱途径从更深的陷阱态的存在,其效果与生长材料的维数,成为块状晶体的主要过程。这些结果强调的是,相比于块状固体其中两个深和浅缺陷的抑制是关键的,低维的纳米结构更有前途的活性物质为LHP闪烁体,前提是它们在功能器件集成符合有效的表面工程。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号