首页> 外文期刊>Advanced Functional Materials >Ultralong 20 Milliseconds Charge Separation Lifetime for Photoilluminated Oligophenylenevinylene-Azafullerene Systems
【24h】

Ultralong 20 Milliseconds Charge Separation Lifetime for Photoilluminated Oligophenylenevinylene-Azafullerene Systems

机译:光照射的低聚亚苯基亚乙烯基-氮杂富勒烯系统的超长20毫秒电荷分离寿命

获取原文
获取原文并翻译 | 示例
           

摘要

The synthesis and characterization of oligophenylenevinylene (OPV)-azafullerene (C59N) systems in the form of OPV-C59N donor-acceptor dyad 1 and C59N-OPV-C59N acceptor-donor-acceptor triad 2 is accomplished. Photoinduced electronic interactions between OPV and C59N within 1 and 2 are assessed by UV-vis and photoluminescence. The redox properties of 1 and 2 are investigated, revealing a set of one-electron oxidation and three one-electron reduction processes owed to OPV and C59N, respectively. The electrochemical bandgap for 1 and 2 is calculated as 1.44 and 1.53 eV, respectively, and the free energy for the formation of the charge-separated state for 1 and 2 via the singlet-excited state of OPV is found negative, proving a thermodynamically favorable the process. Photoexcitation assays are performed in toluene and o-dichlorobenzene (oDCB) and the reactions are monitored with time-resolved absorption and emission spectroscopies. Competitive photoinduced energy and electron transfer are identified to occur in both systems, with the former being dominant in 2. Markedly, the charge-separated state in oDCB exhibits a much longer lifetime compared to that in toluene, reaching 20 ms for 1, the highest ever reported value for fullerene-based materials. These unprecedented results are rationalized by considering conformational phenomena affecting the charge-separated state.
机译:以OPV-C59N供体-受体二元体1和C59N-OPV-C59N受体-供体-受体三元体2的形式完成了低聚亚苯基亚乙烯基(OPV)-氮杂富勒烯(C59N)系统的合成和表征。通过UV-vis和光致发光评估OPV和C59N在1和2之间的光诱导电子相互作用。研究了1和2的氧化还原特性,分别揭示了由于OPV和C59N导致的一组单电子氧化和三个单电子还原过程。计算1和2的电化学带隙分别为1.44和1.53 eV,发现通过OPV的单重激发态形成1和2的电荷分离态的自由能为负,证明在热力学上是有利的过程。在甲苯和邻二氯苯(oDCB)中进行光激发试验,并使用时间分辨的吸收光谱和发射光谱对反应进行监测。两种系统都存在竞争性的光诱导能量和电子转移,其中前者在2中占主导地位。值得注意的是,oDCB中的电荷分离状态比甲苯中的电荷分离状态具有更长的寿命,最高达到1时为20 ms。曾经报道过富勒烯基材料的价值。通过考虑影响电荷分离状态的构象现象,可以使这些空前的结果合理化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号