首页> 外文期刊>Advanced Functional Materials >Electrode Work Function Engineering with Phosphonic Acid Monolayers and Molecular Acceptors: Charge Redistribution Mechanisms
【24h】

Electrode Work Function Engineering with Phosphonic Acid Monolayers and Molecular Acceptors: Charge Redistribution Mechanisms

机译:含膦酸单分子膜和分子受体的电极功函数工程:电荷再分布机理

获取原文
获取原文并翻译 | 示例
           

摘要

The uses of self-assembled monolayers (SAMs) of dipolar molecules or of adsorbed molecular acceptors on electrode materials are common strategies to increase their work function, thereby facilitating hole injection into an organic semiconductor deposited on top. Here it is shown that a combination of both approaches can surpass the performance of the individual ones. By combined experimental and theoretical methods it is revealed that in a three-component system, consisting of an indium-tin-oxide (ITO) electrode, a carbazole-based phosphonic acid SAM, and a molecular acceptor layer on top of the SAM, charge transfer occurs from the ITO through the SAM to the acceptor layer, resulting in an electrostatic field drop over the charge-neutral SAM. This result is in contrast to common expectations of either p-doping the carbazole of the SAM or charge transfer complex formation between the carbazole and the acceptor molecules. A high work function of 5.7 eV is achieved with this combined system; even higher values may be accessible by exploiting the fundamental charge redistribution mechanisms identified here with other material combinations.
机译:在电极材料上使用偶极分子的自组装单层(SAM)或吸附的分子受体是增加其功函的常见策略,从而有助于将空穴注入到沉积在顶部的有机半导体中。此处显示,两种方法的组合可以超过单个方法的性能。通过组合的实验和理论方法,发现在三组分系统中,电荷由铟锡氧化物(ITO)电极,咔唑基膦酸SAM和位于SAM顶部的分子受体层组成从ITO通过SAM到受体层发生转移,导致静电中性SAM上的静电场下降。该结果与p掺杂SAM的咔唑或咔唑和受体分子之间形成电荷转移配合物的普遍期望相反。该组合系统可实现5.7 eV的高功函数。通过利用此处确定的基本电荷再分配机制以及其他材料组合,甚至可以获取更高的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号