首页> 外文期刊>Advanced Functional Materials >Advances in Manganese-Based Oxides Cathodic Electrocatalysts for Li-Air Batteries
【24h】

Advances in Manganese-Based Oxides Cathodic Electrocatalysts for Li-Air Batteries

机译:锂空气电池锰基氧化物阴极电催化剂的研究进展

获取原文
获取原文并翻译 | 示例
           

摘要

Li-air batteries, characteristic of superhigh theoretical specific energy density, cost-efficiency, and environment-friendly merits, have aroused ever-increasing attention. Nevertheless, relatively low Coulomb efficiency, severe potential hysteresis, and poor rate capability, which mainly result from sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) kinetics, as well as pitiful cycle stability caused by parasitic reactions, extremely limit their practical applications. Manganese (Mn)-based oxides and their composites can exhibit high ORR and OER activities, reduce charge/discharge overpotential, and improve the cycling stability when used as cathodic catalyst materials. Herein, energy storage mechanisms for Li-air batteries are summarized, followed by a systematic overview of the progress of manganese-based oxides (MnO2 with different crystal structures, MnO, MnOOH, Mn2O3, Mn3O4, MnOx, perovskite-type and spinel-type manganese oxides, etc.) cathodic materials for Li-air batteries in the recent years. The focus lies on the effects of crystal structure, design strategy, chemical composition, and microscopic physical parameters on ORR and OER activities of various Mn-based oxides, and even the overall performance of Li-air batteries. Finally, a prospect of the research for Mn-based oxides cathodic catalysts in the future is made, and some new insights for more reasonable design of Mn-based oxides electrocatalysts with higher catalytic efficiency are provided.
机译:锂空气电池具有超高的理论比能量密度,成本效益和环保优点的特性,引起了越来越多的关注。然而,相对较低的库仑效率,严重的潜在滞后和较差的速率能力(主要是由缓慢的氧气析出反应(OER)和氧气还原反应(ORR)动力学以及寄生反应引起的可怜的循环稳定性造成的)极大地限制了它们的寿命。实际应用。锰(Mn)基氧化物及其复合材料在用作阴极催化剂材料时,可表现出高的ORR和OER活性,降低充/放电过电势并改善循环稳定性。本文总结了锂空气电池的储能机理,然后系统综述了锰基氧化物(具有不同晶体结构的MnO2,MnO,MnOOH,Mn2O3,Mn3O4,MnOx,钙钛矿型和尖晶石型)的进展。近年来,用于锂空气电池的阴极材料。重点在于晶体结构,设计策略,化学成分和微观物理参数对各种Mn基氧化物的ORR和OER活性甚至锂空气电池整体性能的影响。最后,对锰基氧化物阴极催化剂的研究前景进行了展望,并为更合理设计具有较高催化效率的锰基氧化物电催化剂提供了一些新的见解。

著录项

  • 来源
    《Advanced Functional Materials》 |2018年第15期|1704973.1-1704973..34|共34页
  • 作者单位

    Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lab Clean Energy Chem & Mat, Lanzhou 730000, Gansu, Peoples R China;

    Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lab Clean Energy Chem & Mat, Lanzhou 730000, Gansu, Peoples R China;

    Lanzhou Inst Chem Phys, Chinese Acad Sci, State Key Lab Oxo Synth & Select Oxidat, Lanzhou 730000, Gansu, Peoples R China;

    Lanzhou Inst Chem Phys, Chinese Acad Sci, State Key Lab Oxo Synth & Select Oxidat, Lanzhou 730000, Gansu, Peoples R China;

    Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lab Clean Energy Chem & Mat, Lanzhou 730000, Gansu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electrocatalytic activity; Li-air batteries; manganese-based oxides; oxygen evolution reactions; oxygen reduction reactions;

    机译:电催化活性锂空气电池锰基氧化物析氧反应氧还原反应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号