首页> 外文期刊>Advanced Functional Materials >Morphology-Dependent Magnetism in Nanographene: Beyond Nanoribbons
【24h】

Morphology-Dependent Magnetism in Nanographene: Beyond Nanoribbons

机译:纳米石墨烯中的形态依赖磁性:超越纳米带。

获取原文
获取原文并翻译 | 示例
           

摘要

Imprinting self-sustainable magnetic features into graphene has recently generated much interest owing to its potential application in spintronics. Several strategies for imprinting magnetic features into graphene are proposed theoretically. However, only a few of them are realized experimentally. Here, the first scalable synthesis of magnetic graphene nanoplatelets with diverse morphologies, including nanoribbons and triangular, pentagonal, hexagonal, and other polyhedral shapes, is reported. This material enters the ferromagnetic regime at a temperature of approximate to 37 K with magnetization approaching approximate to 0.45 emu g(-1) under high external magnetic fields. Theoretical calculations are used to explain this sort of morphology-driven magnetism of graphene nanoplatelets, which emerges from the synergistic effects of the size, geometry of nanographenes, edge terminations, and angle between adjacent edges. In addition, they suggest a new way for preparing magnetically ordered graphene nanoplatelets with a higher transition temperature. In this respect, triangular motifs with zigzag edges represent the most promising morphology of graphene nanoplatelets, which can remain magnetically ordered up to approximate to 107 K. Based on these challenging results, further tuning of the size and morphology in spatially confined nanographenes combined with doping and sp(3) functionalization will enable the preparation of magnetically ordered half-metallic carbon sustainable up to room temperature, thus opening new opportunities in spintronics.
机译:由于其在自旋电子学中的潜在应用,将自持磁性特征印制到石墨烯中引起了人们的极大兴趣。理论上提出了几种将磁性特征压印到石墨烯中的策略。但是,其中只有少数是通过实验实现的。在此,首次报道了具有各种形态的磁性石墨烯纳米片的可扩展合成,包括纳米带和三角形,五边形,六边形以及其他多面体形状。这种材料在大约37 K的温度下进入铁磁状态,在高外部磁场下的磁化强度接近0.45 emu g(-1)。理论计算用于解释石墨烯纳米片的这种形态学驱动的磁性,这是由纳米石墨烯的尺寸,几何形状,边缘终止以及相邻边缘之间的角度的协同效应产生的。此外,他们提出了一种制备具有较高转变温度的磁性有序石墨烯纳米片的新方法。在这方面,带有锯齿形边缘的三角形图案代表了最有希望的石墨烯纳米片的形态,可以保持磁性有序直至约107K。基于这些具有挑战性的结果,进一步调整了空间受限纳米石墨烯的尺寸和形态,并进行了掺杂sp(3)的功能化将使磁有序的半金属碳的制备可持续至室温,从而为自旋电子学提供了新的机遇。

著录项

  • 来源
    《Advanced Functional Materials》 |2018年第22期|1800592.1-1800592.9|共9页
  • 作者单位

    Palacky Univ, Fac Sci, Dept Phys Chem, Reg Ctr Adv Technol & Mat, 17 Listopadu 1192-12, Olomouc 77146, Czech Republic;

    Palacky Univ, Fac Sci, Dept Phys Chem, Reg Ctr Adv Technol & Mat, 17 Listopadu 1192-12, Olomouc 77146, Czech Republic;

    Palacky Univ, Fac Sci, Dept Phys Chem, Reg Ctr Adv Technol & Mat, 17 Listopadu 1192-12, Olomouc 77146, Czech Republic;

    Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore;

    Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore;

    Palacky Univ, Fac Sci, Dept Phys Chem, Reg Ctr Adv Technol & Mat, 17 Listopadu 1192-12, Olomouc 77146, Czech Republic;

    Palacky Univ, Fac Sci, Dept Phys Chem, Reg Ctr Adv Technol & Mat, 17 Listopadu 1192-12, Olomouc 77146, Czech Republic;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    confinement; edge engineering; graphene; magnetism; spintronics;

    机译:约束;边缘工程;石墨烯;磁性;自旋电子学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号