首页> 外文期刊>Advanced Functional Materials >Hierarchical Porous Te@ZnCo2O4 Nanofibers Derived from Te@Metal-Organic Frameworks for Superior Lithium Storage Capability
【24h】

Hierarchical Porous Te@ZnCo2O4 Nanofibers Derived from Te@Metal-Organic Frameworks for Superior Lithium Storage Capability

机译:从Te @ Metal-Organic框架派生的分层多孔Te @ ZnCo2O4纳米纤维,具有出色的锂存储能力

获取原文
获取原文并翻译 | 示例
           

摘要

1D hierarchical porous nanocomposites with tailored chemical composition are gaining popularity in lithium-ion batteries. Here, with core@shell Te@ZIF-8 (Zn, Co) nanofibers as a starting point, rational designed porous Te@ZnCo2O4 nanocomposite has been fabricated by a simple morphology-maintained and calcination-induced oxidative decomposition process, with the purpose of simultaneously settling the pulverization and conductivity issues of transition metal oxides. This is the first time to integrate Te and ZnCo2O4 into one architecture at nanometer level. The Te@ZnCo2O4 nanofibers combine both advantages of Te such as excellent electrical conductivity and ZnCo2O4 with high capacity as well as take full use of their synergistic effect. With the favorable 1D porous structure and the unique composition, this novel Te@ZnCo2O4 nanofiber manifests strong ability to improve the lithium storage performances with a high specific capacity of 1364 mA h g(-1) in the initial discharge and a reversible capacity of 956 mA h g(-1) after 100 cycles. When increased the current density to 2000 mA g(-1), the capacity still remains as 307 mA h g(-1), demonstrating superior rate capability. Furthermore, this general strategy can be extended to construct other core@shell Te@MOFs composites.
机译:具有定制化学成分的一维分层多孔纳米复合材料在锂离子电池中越来越受欢迎。在这里,以核壳Te @ ZIF-8(Zn,Co)纳米纤维为起点,通过简单的形态保持和煅烧诱导的氧化分解过程,制备了合理设计的多孔Te @ ZnCo2O4纳米复合材料,其目的是同时解决了过渡金属氧化物的粉碎和电导率问题。这是第一次将Te和ZnCo2O4集成到纳米级结构中。 Te @ ZnCo2O4纳米纤维结合了Te的两个优点,例如出色的导电性和高容量的ZnCo2O4,并充分利用了它们的协同作用。新型Te @ ZnCo2O4纳米纤维具有良好的1D多孔结构和独特的成分,具有提高锂存储性能的强大能力,初始放电的比容量为1364 mA hg(-1),可逆容量为956 mA。 hg(-1)在100个循环后。当电流密度增加到2000 mA g(-1)时,容量仍保持为307 mA h g(-1),这表明其优越的倍率能力。此外,可以将该通用策略扩展为构建其他core @ shell Te @ MOFs复合材料。

著录项

  • 来源
    《Advanced Functional Materials》 |2017年第5期|1604941.1-1604941.7|共7页
  • 作者单位

    Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号