首页> 外文期刊>Advanced Functional Materials >Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High-Performance Asymmetric Supercapacitors
【24h】

Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High-Performance Asymmetric Supercapacitors

机译:超细镍纳米管阵列上的Fe2O3纳米酮作为高性能不对称超级电容器的高效阳极

获取原文
获取原文并翻译 | 示例
           

摘要

High performance of electrochemical energy storage devices depends on the smart structure engineering of electrodes, including the tailored nanoarchitectures of current collectors and subtle hybridization of active materials. To improve the anode supercapacitive performance of Fe2O3 for high-voltage asymmetric supercapacitors, here, a hybrid core-branch nanoarchitecture is proposed by integrating Fe2O3 nanoneedles on ultrafine Ni nanotube arrays (NiNTAs@ Fe2O3 nanoneedles). The fabrication process employs a bottomup strategy via a modified template-assisted method starting from ultrafine ZnO nanorod arrays, ensuring the formation of ultrafine Ni nanotube arrays with ultrathin tube walls. The novel developed NiNTAs@ Fe2O3 nanoneedle electrode is demonstrated to be a highly capacitive anode (418.7 F g(-1) at 10 mV s(-1)), matching well with the similarly built NiNTAs@ MnO2 nanosheet cathode. Contributed by the efficient electron collection paths and short ion diffusion paths in the uniquely designed anode and cathode, the asymmetric supercapacitors exhibit an excellent maximum energy density of 34.1 Wh kg(-1) at the power density of 3197.7 W kg(-1) in aqueous electrolyte and 32.2 Wh kg(-1) at the power density of 3199.5 W kg(-1) in quasi-solid-state gel electrolyte.
机译:电化学储能设备的高性能取决于电极的智能结构工程,包括定制的集电器纳米结构和活性材料的精细杂交。为了提高Fe2O3对高压不对称超级电容器的阳极超电容性能,在这里,提出了一种通过将Fe2O3纳米针集成在超细Ni纳米管阵列(NiNTAs @ Fe2O3纳米针)上的混合核分支纳米体系结构。该制造工艺采用一种自底向上策略,该方法通过一种改进的模板辅助方法从超细ZnO纳米棒阵列开始,从而确保形成具有超薄管壁的超细Ni纳米管阵列。新型开发的NiNTAs @ Fe2O3纳米针电极被证明是高电容性阳极(在10 mV s(-1)时为418.7 F g(-1)),与相似构建的NiNTAs @ MnO2纳米片阴极非常匹配。通过独特设计的阳极和阴极中的有效电子收集路径和短离子扩散路径,非对称超级电容器在3197.7 W kg(-1)的功率密度下具有34.1 Wh kg(-1)的出色最大能量密度。在准固态凝胶电解质中的功率密度为3199.5 W kg(-1)时,水电解质和32.2 Wh kg(-1)。

著录项

  • 来源
    《Advanced Functional Materials》 |2017年第14期|1606728.1-1606728.10|共10页
  • 作者单位

    Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China|Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China|Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China;

    Natl Univ Singapore, Fac Engn, Dept Chem & Biomol Engn, Singapore 117576, Singapore;

    Natl Univ Singapore, Fac Engn, Dept Chem & Biomol Engn, Singapore 117576, Singapore;

    Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China|Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号