首页> 外文期刊>Advanced Functional Materials >Tough Elastomers with Superior Self-Recoverability Induced by Bioinspired Multiphase Design
【24h】

Tough Elastomers with Superior Self-Recoverability Induced by Bioinspired Multiphase Design

机译:受生物启发的多相设计诱导的具有优异自我恢复性的坚韧弹性体

获取原文
获取原文并翻译 | 示例
           

摘要

Incorporating reversible sacrificial bonds in network polymers not only toughens these materials but also endows them with self-recoverability. However, self-recoverability is only realized for dispersed energy less than 10 MJ m(-3). It remains a challenge to achieve simultaneous high stretchability, toughness, and recoverability. Here, inspired by the structure of mussel byssus cuticles, a new design strategy is proposed and demonstrated to improve both the toughness and self-recoverability of elastomers by introducing a microphase-separated structure with different physical crosslink densities. This structure can be achieved using a carefully designed comonomer sequence distribution of hydrogen bonding units in an ABA-type triblock copolymer. The A blocks form hard domains with dense crosslinking that prevents macroscopic deformation, while the B blocks form a softer matrix with sparse and dynamic crosslinks that serve as sacrificial bonds. This elastomer exhibits high toughness (approximate to 62 MJ m(-3)), self-healing, and most notably, excellent self-recovery (recovery against 650% elongation and 17 MPa tensile stress with a dissipated energy >27 MJ m(-3) at room temperature). This combination of toughness, selfhealing, and self-recovery expands the range of applications of these advanced dynamic materials.
机译:在网络聚合物中引入可逆的牺牲键,不仅可以增强这些材料的韧性,还可以使其具有自我恢复性。但是,仅当分散的能量小于10 MJ m(-3)时才实现自我恢复。同时实现高拉伸性,韧性和可恢复性仍然是一个挑战。在此,受贻贝贻贝表皮的结构启发,提出了一种新的设计策略,并通过引入具有不同物理交联密度的微相分离结构来改善弹性体的韧性和自恢复性。可以使用ABA型三嵌段共聚物中氢键合单元的精心设计的共聚单体序列分布来实现此结构。 A嵌段形成具有紧密交联的硬结构域,从而防止了宏观变形,而B嵌段形成了较软的基体,具有稀疏的和动态的交联键,用作牺牲键。该弹性体显示出高韧性(约62 MJ m(-3)),具有自修复性,最显着的是具有出色的自恢复性(对650%伸长率和17 MPa拉应力的恢复,耗散能量> 27 MJ m(- 3)在室温下)。韧性,自我修复和自我恢复的结合扩展了这些高级动态材料的应用范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号