首页> 外文期刊>Advanced Functional Materials >Tuning the Charge Transfer in F-x-TCNQ/Rubrene Single-Crystal Interfaces
【24h】

Tuning the Charge Transfer in F-x-TCNQ/Rubrene Single-Crystal Interfaces

机译:在F-x-TCNQ / Rubrene单晶界面中调整电荷转移

获取原文
获取原文并翻译 | 示例
           

摘要

Interfaces formed by two different organic semiconductors often exhibit a large conductivity, originating from transfer of charge between the constituent materials. The precise mechanisms driving charge transfer and determining its magnitude remain vastly unexplored, and are not understood microscopically. To start addressing this issue, we have performed a systematic study of highly reproducible single-crystal interfaces based on rubrene (tetraphenylnaphthacene) and F-x-TCNQ (fluorinated tetracyanoquinodimethane), a family of molecules whose electron affinity can be tuned by increasing the fluorine content. The combined analysis of transport and scanning Kelvin probe measurements reveals that the interfacial charge-carrier density, resistivity, and activation energy correlate with the electron affinity of F-x-TCNQ crystals, with a higher affinity resulting in larger charge transfer. Although the transport properties can be described consistently and quantitatively using a mobility-edge model, we find that a quantitative analysis of charge transfer in terms of single-particle band diagrams reveals a discrepancy approximate to 100 meV in the interfacial energy level alignment. We attribute the discrepancy to phenomena known to affect the energetics of organic semiconductors, which are neglected by a single-particle description-such as molecular relaxation and bandgap renormalization due to screening. The systematic behavior of the F-x-TCNQ/rubrene interfaces opens the possibility to investigate these phenomena experimentally, under controlled conditions.
机译:由两种不同的有机半导体形成的界面通常表现出较大的电导率,这源于组成材料之间的电荷转移。驱动电荷转移并确定其大小的精确机制仍未得到充分探索,并且在微观上还没有被理解。为了解决这个问题,我们对基于红荧烯(四苯并四苯)和F-x-TCNQ(氟化四氰基喹二甲烷)的高可复制单晶界面进行了系统研究,F-x-TCNQ是一类分子,其电子亲和力可以通过增加氟含量来调节。传输和扫描开尔文探针测量的组合分析表明,界面电荷载流子密度,电阻率和活化能与F-x-TCNQ晶体的电子亲和力相关,亲和力越高,电荷转移越大。尽管可以使用迁移率边缘模型来一致且定量地描述传输性质,但我们发现,根据单粒子能带图对电荷转移进行的定量分析显示,界面能级排列中的差异约为100 meV。我们将差异归因于已知会影响有机半导体能量的现象,这些现象被单粒子描述所忽略,例如分子弛豫和由于筛选引起的带隙重归一化。 F-x-TCNQ /钌界面的系统行为为在受控条件下实验研究这些现象提供了可能性。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第14期|2334-2340|共7页
  • 作者单位

    Univ Geneva, DQMP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland|Univ Geneva, GAP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland;

    Univ Geneva, DQMP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland|Univ Geneva, GAP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland;

    Univ Geneva, DQMP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland|Univ Geneva, GAP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号