首页> 外文期刊>Advanced Functional Materials >The Transient Localization Scenario for Charge Transport in Crystalline Organic Materials
【24h】

The Transient Localization Scenario for Charge Transport in Crystalline Organic Materials

机译:晶体有机材料中电荷传输的瞬态本地化方案

获取原文
获取原文并翻译 | 示例
           

摘要

Charge transport in crystalline organic semiconductors is intrinsically limited by the presence of large thermal molecular motions, which are a direct consequence of the weak van der Waals intermolecular interactions. These lead to an original regime of transport called transient localization, sharing features of both localized and itinerant electron systems. After a brief review of experimental observations that pose a challenge to the theory, we concentrate on a commonly studied model which describes the interaction of the charge carriers with intermolecular vibrations. We present different theoretical approaches that have been applied to the problem in the past, and then turn to more modern approaches that are able to capture the key microscopic phenomenon at the origin of the puzzling experimental observations, i.e., the quantum localization of the electronic wavefunction at timescales shorter than the typical molecular motions. We describe in particular a relaxation time approximation which clarifi es how the transient localization due to dynamical molecular motions relates to the Anderson localization realized for static disorder, and allows us to devise strategies to improve the mobility of actual compounds. The relevance of the transient localization scenario to other classes of systems is briefl y discussed.
机译:结晶有机半导体中的电荷传输本质上受到大分子热运动的限制,这是范德华分子间相互作用弱的直接结果。这些导致了一种原始的传输方式,称为瞬态局部化,共享了局部电子系统和流动电子系统的特征。在简短地回顾了对该理论构成挑战的实验观察之后,我们集中于一个常用的模型,该模型描述了电荷载体与分子间振动的相互作用。我们介绍了过去已应用于该问题的不同理论方法,然后转向了更现代的方法,这些方法能够在令人费解的实验观察的起源处捕获关键的微观现象,即电子波函数的量子定位时标比典型的分子运动短。我们特别描述了弛豫时间近似值,它阐明了由于动态分子运动而引起的瞬态定位与为静态障碍实现的安德森定位之间的关系,并使我们能够设计出改善实际化合物迁移率的策略。简要讨论了瞬态本地化场景与其他类别系统的相关性。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第14期|2292-2315|共24页
  • 作者单位

    CNRS, Inst Neel, F-38042 Grenoble, France|Univ Grenoble Alpes, F-38042 Grenoble, France;

    CNRS, Inst Neel, F-38042 Grenoble, France|Univ Grenoble Alpes, F-38042 Grenoble, France;

    Univ Aquila, Dept Phys & Chem Sci, Via Vetoio, I-67100 Laquila, Italy|Univ Aquila, Dept Phys & Chem Sci, CNR ISC, Via Taurini, I-00185 Rome, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号