首页> 外文期刊>Advanced Functional Materials >Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation
【24h】

Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation

机译:机械屈曲指导3D螺旋介观结构的形成:分析模型和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

3D helical mesostructures are attractive for applications in a broad range of microsystem technologies due to their mechanical and electromagnetic properties as stretchable interconnects, radio frequency antennas, and others. Controlled compressive buckling of 2D serpentine-shaped ribbons provides a strategy to formation of such structures in wide ranging classes of materials (from soft polymers to brittle inorganic semiconductors) and length scales (from nanometer to centimeter), with an ability for automated, parallel assembly over large areas. The underlying relations between the helical configurations and fabrication parameters require a relevant theory as the basis of design for practical applications. Here, an analytic model of compressive buckling in serpentine microstructures is presented based on the minimization of total strain energy that results from various forms of spatially dependent deformations. Experiments at micro-and millimeter scales, together with finite element analyses, have been exploited to examine the validity of developed model. The theoretical analyses shed light on general scaling laws in terms of three groups of fabrication parameters (related to loading, material, and 2D geometry), including a negligible effect of material parameters and a square root dependence of primary displacements on the compressive strain. Furthermore, analytic solutions were obtained for the key physical quantities (e.g., displacement, curvature and maximum strain). A demonstrative example illustrates how to leverage the analytic solutions in choosing the various design parameters, such that brittle fracture or plastic yield can be avoided in the assembly process.
机译:3D螺旋介观结构具有可伸缩互连,射频天线等机械和电磁特性,因此在广泛的微系统技术中有吸引力。 2D蛇形带的可控压缩屈曲提供了一种策略,可以在各种材料(从软聚合物到脆性无机半导体)和长度范围(从纳米到厘米)的材料中形成这种结构,并具有自动,平行组装的能力大面积。螺旋结构和制造参数之间的潜在关系需要相关理论作为实际应用设计的基础。在此,基于最小化由各种形式的空间相关变形引起的总应变能,给出了蛇形微结构中压缩屈曲的解析模型。微米和毫米规模的实验以及有限元分析已被用来检验开发模型的有效性。理论分析从三组制造参数(与载荷,材料和2D几何形状有关)方面揭示了一般的缩放定律,其中包括材料参数的影响可忽略不计以及主位移对压缩应变的平方根依赖性。此外,获得了关键物理量(例如,位移,曲率和最大应变)的解析解。一个说明性示例说明了如何在选择各种设计参数时利用分析解决方案,从而可以在组装过程中避免脆性断裂或塑性屈服。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第17期|2909-2918|共10页
  • 作者单位

    Tsinghua Univ, Dept Engn Mech, Ctr Mech & Mat, AML, Beijing 100084, Peoples R China;

    Univ Illinois, Frederick Seitz Mat Res Lab, Dept Mat Sci & Engn, Urbana, IL 61801 USA;

    Univ Illinois, Frederick Seitz Mat Res Lab, Dept Mat Sci & Engn, Urbana, IL 61801 USA;

    Univ Illinois, Frederick Seitz Mat Res Lab, Dept Mat Sci & Engn, Urbana, IL 61801 USA;

    Peking Univ, Natl Key Lab Sci & Technol Micro Nano Fabricat, Beijing 100871, Peoples R China;

    Univ Illinois, Frederick Seitz Mat Res Lab, Dept Mat Sci & Engn, Urbana, IL 61801 USA;

    Tsinghua Univ, Dept Engn Mech, Ctr Mech & Mat, AML, Beijing 100084, Peoples R China;

    Northwestern Univ, Ctr Engn & Hlth, Skin Dis Res Ctr, Dept Civil & Environm Engn, Evanston, IL 60208 USA|Northwestern Univ, Dept Mech Engn, Ctr Engn & Hlth, Skin Dis Res Ctr, Evanston, IL 60208 USA;

    Tsinghua Univ, Dept Engn Mech, Ctr Mech & Mat, AML, Beijing 100084, Peoples R China;

    Univ Illinois, Frederick Seitz Mat Res Lab, Beckman Inst Adv Sci & Technol, Dept Mat Sci & Engn, Urbana, IL 61801 USA|Univ Illinois, Frederick Seitz Mat Res Lab, Beckman Inst Adv Sci & Technol, Dept Chem Mech Sci & Engn, Urbana, IL 61801 USA|Univ Illinois, Frederick Seitz Mat Res Lab, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Urbana, IL 61801 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号