首页> 外文期刊>Advanced Functional Materials >Capacitance Enhancement in a Semiconductor Nanostructure-Based Supercapacitor by Solar Light and a Self-Powered Supercapacitor-Photodetector System
【24h】

Capacitance Enhancement in a Semiconductor Nanostructure-Based Supercapacitor by Solar Light and a Self-Powered Supercapacitor-Photodetector System

机译:太阳光和自供电超级电容器光电探测器系统增强基于半导体纳米结构的超级电容器的电容

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of the environment on the energy storage of supercapacitors as well as the underlying mechanisms have long been neglected. This paper reports that the capacitance of hexagonal-phase tungsten oxide (h-WO3)-based supercapacitors increases by approximate to 17% under solar light. Thorough analyses of the wavelength dependence of the enhancement, capacitive mechanism, energy storage dynamics, and impedance reveal that: i) photoexcited electrons are responsible for the enhancement; ii) the insertion of protons into the large hexagonal tunnels of h-WO3, instead of a surface capacitive process, is greatly facilitated by the photoexcited electrons; iii) the theoretical light-induced capacitance enhancement can reach up to 38% for a h-WO3-based supercapacitor. Moreover, as an application of this finding, a self-powered photodetector based on a h-WO3 supercapacitor is fabricated, wherein the photoexcited electrons serve as the signal for detecting solar light. The device works without an external power source and can be considered as an ultimately integrated power source-sensor system. This work sheds light on the interaction between solar light and a semiconductor-based supercapacitor as well as the concrete mechanisms behind the phenomenon. These efforts also open the door to the design of highly integrated, brand-new power source-sensor systems.
机译:长期以来,人们一直忽略了环境对超级电容器能量存储的影响以及潜在的机制。本文报道了六方相氧化钨(h-WO3)基超级电容器在太阳光下的电容增加了约17%。对增强物的波长依赖性,电容性机制,储能动力学和阻抗的透彻分析表明:i)光激发电子是增强物的原因; ii)光激发电子极大地促进了质子向h-WO3的大六边形隧道的插入,而不是表面电容过程; iii)对于基于h-WO3的超级电容器,理论上光诱导的电容增强可以达到38%。此外,作为该发现的应用,制造了基于h-WO3超级电容器的自供电光电检测器,其中,光激发电子用作检测太阳光的信号。该设备无需外部电源即可工作,可以视为最终集成的电源传感器系统。这项工作揭示了太阳光与基于半导体的超级电容器之间的相互作用以及这种现象背后的具体机制。这些努力也为高度集成的全新电源传感器系统的设计打开了大门。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第25期|4481-4490|共10页
  • 作者单位

    City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China;

    City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China;

    City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China;

    City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China;

    City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China;

    City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China;

    Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China;

    City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China|City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518000, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    multifunctional energy storage device; photodetector; photoexcited electron; supercapacitor; tungsten oxide;

    机译:多功能储能装置光电探测器光激发电子超级电容器氧化钨;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号