首页> 外文期刊>Advanced Functional Materials >Hierarchical Graphene-Based Films with Dynamic Self-Stiffening for Biomimetic Artificial Muscle
【24h】

Hierarchical Graphene-Based Films with Dynamic Self-Stiffening for Biomimetic Artificial Muscle

机译:仿生人造肌肉动态自增韧的分层石墨烯基薄膜

获取原文
获取原文并翻译 | 示例
           

摘要

Biological tissues such as muscle cells can adapt their structural and mechanical response upon external mechanical stimuli. Conversely, artificial muscles, intended to reproduce the salient functional features of biological muscles, usually undergo mechanical fatigue when subjected to dynamic stress. Besides passively improving the resilience to dynamic loads, here, it is reported that macroscopic films based on graphene and its chemical derivate exhibit an increase in modulus by up to 84% after subjected to a low-amplitude (0.1%) dynamic tension. Through a combination of experimental testing and molecular dynamics simulations, the unique self-stiffening behavior is attributed to the straightening and reorientation of graphene sheets and is further tuned through tailoring interlayer adhesion. Meanwhile, artificial muscles based on graphene films are designed and interestingly improved stiffness of our muscle materials after "training" are demonstrated. These results help to harness the stiffening mechanism and can be useful for the development of adaptable structural materials for biomechanical applications.
机译:诸如肌肉细胞的生物组织可以在外部机械刺激下适应其结构和机械反应。相反,旨在再现生物肌肉显着功能特征的人造肌肉,在受到动态应力时通常会遭受机械疲劳。据报道,除了被动地提高对动态载荷的回弹力外,基于石墨烯及其化学衍生物的宏观薄膜在受到低幅值(0.1%)的动态张力后,其模量提高了84%。通过将实验测试与分子动力学模拟相结合,独特的自增强行为归因于石墨烯片的拉直和重新取向,并且通过定制层间粘合力进行了进一步调整。同时,设计了基于石墨烯薄膜的人造肌肉,并有趣地展示了“训练”后我们肌肉材料的刚度。这些结果有助于利用加强机制,并可用于开发适用于生物力学应用的结构材料。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第38期|7003-7010|共8页
  • 作者单位

    Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China|Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China;

    Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China;

    Univ Chinese Acad Sci, Beijing 100049, Peoples R China|Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China;

    Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China|Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China;

    Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA;

    Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China|Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China|Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号