首页> 外文期刊>Advanced Functional Materials >Near-Field Energy Transfer Using Nanoemitters For Optoelectronics
【24h】

Near-Field Energy Transfer Using Nanoemitters For Optoelectronics

机译:使用纳米发射器的光电子近场能量传输

获取原文
获取原文并翻译 | 示例
           

摘要

Effective utilization of excitation energy in nanoemitters requires control of exciton flow at the nanoscale. This can be readily achieved by exploiting nearfield nonradiative energy transfer mechanisms such as dipole-dipole coupling (i.e., Forster resonance energy transfer) and simultaneous two-way electron transfer via exchange interaction (i.e., Dexter energy transfer). In this feature article, we review nonradiative energy transfer processes between emerging nanoemitters and exciton scavengers. To this end, we highlight the potential of colloidal semiconductor nanocrystals, organic semiconductors, and two-dimensional materials as efficient exciton scavengers for light harvesting and generation in optoelectronic applications. We present and discuss unprecedented exciton transfer in nanoemitter-nanostructured semiconductor composites enabled by strong light-matter interactions. We elucidate remarkably strong nonradiative energy transfer in self-assembling atomically flat colloidal nanoplatelets. In addition, we underscore the promise of organic semiconductor-nanocrystal hybrids for spin-triplet exciton harvesting via Dexter energy transfer. These efficient exciton transferring hybrids will empower desired optoelectronic properties such as long-range exciton diffusion, ultra-fast multiexciton harvesting, and efficient photon upconversion, leading to the development of excitonic optoelectronic devices such as exciton-driven light-emitting diodes, lasers, and photodetectors.
机译:在纳米发射体中有效利用激发能需要控制纳米级的激子流。这可以通过利用近场非辐射能量转移机制如偶极-偶极耦合(即,福斯特共振能量转移)和通过交换相互作用同时进行双向电子转移(即,德克斯特能量转移)来容易地实现。在这篇专题文章中,我们回顾了新兴的纳米发射体和激子清除剂之间的非辐射能量转移过程。为此,我们强调了胶体半导体纳米晶体,有机半导体和二维材料作为光电子收集中有效的激子清除剂的潜力。我们提出并讨论了通过强光-物质相互作用实现的纳米发射体-纳米结构半导体复合材料中前所未有的激子转移。我们阐明了自组装原子平坦的胶体纳米血小板中非离子能量的强烈转移。此外,我们强调了通过德克斯特能量转移收集自旋三重态激子的有机半导体-纳米晶体杂化物的前景。这些有效的激子转移混合体将赋予所需的光电特性,例如远程激子扩散,超快多激子收获和有效的光子上转换,从而导致激子光电器件的发展,例如激子驱动的发光二极管,激光器和光电探测器。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第45期|8158-8177|共20页
  • 作者单位

    Bilkent Univ, Dept Elect & Elect Engn, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, TR-06800 Ankara, Turkey|SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA;

    Bilkent Univ, Dept Elect & Elect Engn, UNAM Inst Mat Sci & Nanotechnol, Dept Phys, TR-06800 Ankara, Turkey|Nanyang Technol Univ, Sch Elect & Elect Engn, Luminous Ctr Excellence Semicond Lighting & Displ, Sch Phys & Math Sci,Sch Mat Sci & Engn, Nanyang Ave, Singapore 639798, Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号