首页> 外文期刊>Advanced Functional Materials >Smart Hybridization of TiO2 Nanorods and Fe3O4 Nanoparticles with Pristine Graphene Nanosheets: Hierarchically Nanoengineered Ternary Heterostructures for High-Rate Lithium Storage
【24h】

Smart Hybridization of TiO2 Nanorods and Fe3O4 Nanoparticles with Pristine Graphene Nanosheets: Hierarchically Nanoengineered Ternary Heterostructures for High-Rate Lithium Storage

机译:TiO2纳米棒和Fe3O4纳米粒子与原始石墨烯纳米片的智能杂交:用于高速率锂存储的分层纳米工程三元异质结构。

获取原文
获取原文并翻译 | 示例
           

摘要

Today, the ever-increasing demand for large-size power tools has provoked worldwide competition in developing lithium-ion batteries having higher energy and power densities. In this context, advanced anode materials are being extensively pursued, among which TiO2 is particularly promising owing to its high safety, excellent cost and environmental performances, and high cycle stability. However, TiO2 is faced with two detrimental deficiencies, that is, extremely low theoretical capacity and conductivity. Herein, a smart hybridization strategy is proposed for the hierarchical co-assembly of TiO2 nanorods and Fe3O4 nanoparticles on pristine graphene nanosheets, aiming to simultaneously address the capacity and conductivity deficiencies of TiO2 by coupling it with high-capacity (Fe3O4) and high-conductivity (pristine graphene) components. The resulting novel, multifunctional ternary heterostructures effectively integrate the intriguing functionalities of the three building blocks: TiO2 as the major active material can adequately retain such merits as high safety and cycle stability, Fe3O4 as the auxiliary active material can contribute extraordinarily high capacities, and pristine graphene as the conductive dopant can guarantee sufficient percolation pathways. Benefiting from a remarkable synergy, the ternary heterostructures deliver superior reversible capacities and rate capabilities, thus casting new light on developing next-generation, high-performance anode materials.
机译:如今,对大型电动工具的需求不断增长,在开发具有更高能量和功率密度的锂离子电池方面引发了全球竞争。在这种情况下,正在广泛地寻求先进的阳极材料,其中TiO 2由于其高安全性,优异的成本和环境性能以及高循环稳定性而特别有前途。但是,TiO 2面临两个不利的缺点,即极低的理论容量和电导率。在本文中,提出了一种智能杂交策略,用于在原始石墨烯纳米片上将TiO2纳米棒和Fe3O4纳米粒子分层共组装,旨在通过结合高容量(Fe3O4)和高电导率同时解决TiO2的容量和电导率不足问题。 (原始石墨烯)组件。由此产生的新颖的多功能三元异质结构有效地整合了三个构件的有趣功能:作为主要活性材料的TiO2可以充分保留高安全性和循环稳定性等优点,作为辅助活性材料的Fe3O4可以提供超高的容量,原始石墨烯作为导电掺杂剂可以保证足够的渗透途径。三元异质结构得益于出色的协同作用,可提供出色的可逆容量和倍率功能,从而为开发下一代高性能阳极材料开辟了新的道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号