首页> 外文期刊>Advanced Functional Materials >Dependence of Dye Regeneration and Charge Collection on the Pore-Filling Fraction in Solid-State Dye-Sensitized Solar Cells
【24h】

Dependence of Dye Regeneration and Charge Collection on the Pore-Filling Fraction in Solid-State Dye-Sensitized Solar Cells

机译:染料再生和电荷收集对固态染料敏化太阳能电池中孔隙填充率的依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

Solid-state dye-sensitized solar cells rely on effective infiltration of a solid-state hole-transporting material into the pores of a nanoporous TiO_2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole-transfer yield from the dye to the hole-transporting material 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is shown to rise rapidly with higher pore-filling fractions as the dye-coated pore surface is increasingly covered with hole-transporting material. Once a pore-filling fraction of 30% is reached, further increases do not significantly change the hole-transfer yield. Using simple models of infiltration of spiro-OMeTAD into the TiO_2 porous network, it is shown that this pore-filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole-transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole-transporting material. Comparison of these results with device parameters shows that improvements of the power-conversion efficiency beyond ≈30% pore filling are not caused by a higher hole-transfer yield, but by a higher charge-collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power-conversion efficiencies with increasing pore-filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro-OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO_2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore-filling fraction.
机译:固态染料敏化太阳能电池依赖于固态空穴传输材料有效渗透到纳米多孔TiO_2网络的孔中,以实现染料再生和空穴提取。使用微秒瞬态吸收光谱法和飞秒光致发光上转换光谱法,从染料到空穴传输材料2,2',7,7'-四(N,N-二-对甲氧基苯胺)-9, 9'-螺双芴(spiro-OMeTAD)随着较高的孔填充率而迅速上升,因为染料涂覆的孔表面越来越多地被空穴传输材料覆盖。一旦达到30%的孔填充率,进一步增加不会显着改变空穴传输率。使用螺旋-OMeTAD渗透到TiO_2多孔网络的简单模型,表明该孔填充率小于至少用单层空穴传输材料覆盖染料表面所需的量,表明带电通过染料单层网络的扩散先于转移到空穴传输材料。将这些结果与器件参数进行比较,结果表明,功率转换效率提高到约30%以上并非是由更高的空穴传输产率引起的,而是由更高的电荷收集效率引起的,电荷发现效率的提高是逐步发生的。随孔隙填充率的增加,观察到的光电流和功率转换效率的急剧上升与渗流理论密切相关,从而预测了粘附在孔壁上的连续螺-OMeTAD层中的内聚路径形成点。根据渗流理论,可以预测,对于孔径为20 nm的标准介孔TiO_2,光电流不应超过≈83%的孔隙填充率。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第5期|668-677|共10页
  • 作者单位

    Clarendon Laboratory Department of Physics University of Oxford Parks Road, Oxford, OX1 3PU, UK;

    Clarendon Laboratory Department of Physics University of Oxford Parks Road, Oxford, OX1 3PU, UK;

    Clarendon Laboratory Department of Physics University of Oxford Parks Road, Oxford, OX1 3PU, UK;

    Clarendon Laboratory Department of Physics University of Oxford Parks Road, Oxford, OX1 3PU, UK;

    Clarendon Laboratory Department of Physics University of Oxford Parks Road, Oxford, OX1 3PU, UK;

    Clarendon Laboratory Department of Physics University of Oxford Parks Road, Oxford, OX1 3PU, UK;

    Clarendon Laboratory Department of Physics University of Oxford Parks Road, Oxford, OX1 3PU, UK;

    Clarendon Laboratory Department of Physics University of Oxford Parks Road, Oxford, OX1 3PU, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号