首页> 外文期刊>Advanced Functional Materials >Accelerated Iron Oxide Nanoparticle Degradation Mediated by Polyester Encapsulation within Cellular Spheroids
【24h】

Accelerated Iron Oxide Nanoparticle Degradation Mediated by Polyester Encapsulation within Cellular Spheroids

机译:球囊中的聚酯封装介导的氧化铁纳米粒子的加速降解

获取原文
获取原文并翻译 | 示例
           

摘要

Nanomaterials including gold nanoparticles, polymeric nanoparticles, and magnetic iron oxide nanoparticles are utilized in tissue engineering for imaging, drug delivery, and maturation. Prolonged presence of these nanomaterials within biological systems remains a concern due to potential adverse affects on cell viability and phenotype. Accelerating nanomaterial degradation within biological systems is expected to reduce the potential adverse effects in the tissue. Similar to biodegradable polymeric scaffolds, the ideal nanomaterial remains stable for sufficient time to accomplish its desired task, and then rapidly degrades once that task is completed. Here, surface modifications are reported to accelerate iron oxide MNP degradation mediated by polymer encapsulation, in which iodegradable coatings composed of FDA approved polymers with different degradation rates are used: poly(lactide) (PLA) or copolymer poly(lactide-co-glycolide) (PLGA). Results demonstrate that degradation of MNPs can be controlled by varying the content and composition of the polymeric nanoparticles used for MNP encapsulation (PolyMNPs). Incorporated into cellular spheroids, PolyMNPs maintain a high viability compared to non-coated MNPs, and are also useful in magnetically patterning cellular spheroids into fused tissues for tissue engineering applications. Accelerated degradation compared to non-coated MNPs makes PolyMNPs a viable alternative for removing nanomaterials from tissues after accomplishing their desired role.
机译:包括金纳米颗粒,聚合物纳米颗粒和磁性氧化铁纳米颗粒在内的纳米材料被用于组织工程中以进行成像,药物输送和成熟。由于对细胞生存力和表型的潜在不利影响,这些纳米材料在生物系统中的长期存在仍然令人担忧。预期在生物系统内加速纳米材料降解将减少组织中的潜在不利影响。类似于可生物降解的聚合物支架,理想的纳米材料在足够长的时间内保持稳定以完成其所需的任务,然后一旦完成该任务便迅速降解。在此,据报道表面改性可加速聚合物封装介导的氧化铁MNP降解,其中使用了由FDA批准的具有不同降解速率的聚合物组成的可降解涂层:聚丙交酯(PLA)或共聚物聚丙交酯-乙交酯(PLGA)。结果表明,可以通过改变用于MNP封装(PolyMNPs)的聚合物纳米颗粒的含量和组成来控制MNP的降解。与未包被的MNP相比,PolyMNP结合到细胞球体中可保持较高的生存能力,还可用于将细胞球体磁性图案化为融合组织中的组织工程应用。与未涂覆的MNP相比,加速降解使PolyMNP成为在完成所需作用后从组织中去除纳米材料的可行选择。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第6期|800-807|共8页
  • 作者单位

    Department of Bioengineering Clemson University 301 Rhodes Research Center Clemson, SC, 29634, USA;

    Department of Bioengineering Clemson University 301 Rhodes Research Center Clemson, SC, 29634, USA;

    Department of Bioengineering Clemson University 301 Rhodes Research Center Clemson, SC, 29634, USA;

    Department of Bioengineering Clemson University 301 Rhodes Research Center Clemson, SC, 29634, USA;

    Department of Bioengineering Clemson University 301 Rhodes Research Center Clemson, SC, 29634, USA;

    Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston, SC, 29425, USA;

    Department of Bioengineering Clemson University 301 Rhodes Research Center Clemson, SC, 29634, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号