首页> 外文期刊>Advanced Functional Materials >Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles
【24h】

Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles

机译:尖峰磁等离子体超颗粒的自组装机制

获取原文
获取原文并翻译 | 示例
           

摘要

Concave nanoparticles (NPs) with complex angled and non-Platonic geometries have unique optical, magnetic, catalytic, and biological properties originating from the singularities of the electrical field in apexes and craters. Preparation of such particles with a uniform size/shape and core-shell morphology represents a significant challenge, largely because of the poor knowledge of their formation mechanism. Here, this challenge is addressed and a study of the mechanism of their formation is presented for a case of complex spiky morphologies that led us to the conclusion that NPs with concave geometries can be, in fact, supraparticles (SPs) produced via the self-assembly of smaller convex integrants. This mechanism is exemplified by the vivid case of spiky SPs formed via the attachment of small and faceted Au NPs on smooth Au-coated iron oxide (Fe_3O_4@Au) seeds. The theoretical calculations of energies of primary interactions-electrostatic repulsion and van-der Waals repulsion, elaborated for this complex case-confirm experimental observation and the self-limiting mechanism of SP formation. Besides demonstrating the mechanistic aspects of synthesis of NPs with complex geometries, this work also uncovers a facile approach for preparation of concave magnetoplasmonic particles. When combined with a spiky geometry, such bi-functional magnetoplasmonic SPs can serve as a unique platform for optoelectronic devices and biomedical applications.
机译:具有复杂的倾斜和非帕拉托尼克几何形状的凹形纳米颗粒(NP)具有独特的光学,磁性,催化和生物学特性,这些特性源自顶点和环形山中电场的奇异性。制备具有均一的尺寸/形状和核-壳形貌的颗粒代表了巨大的挑战,这主要是由于对其形成机理的了解不足。在这里,解决了这一难题,并针对一例复杂的尖峰形貌提出了其形成机理的研究,这使我们得出结论,具有凹形几何形状的NP实际上可以是通过自组装产生的超颗粒(SP)。较小的凸积分的集合。通过在光滑的金包金的氧化铁(Fe_3O_4 @ Au)种子上附着小且多面的金纳米粒子形成尖峰SP的生动例子,可以说明这种机制。对于这种复杂的案例验证实验观察和SP形成的自限机理,详细阐述了初次相互作用的能量(静电排斥和范德华排斥)的理论计算。除了展示具有复杂几何形状的NP的合成机理外,这项工作还揭示了一种制备凹形磁等离子体粒子的简便方法。当与尖尖的几何形状结合时,此类双功能磁等离子体SP可以用作光电设备和生物医学应用程序的独特平台。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第10期|1439-1448|共10页
  • 作者单位

    Department of Nano Fusion Technology Pusan National University 627-706, Republic of Korea;

    High Technology Components &. Materials Research Center Korean Basic Science Institute Busan, 609-735, Republic of Korea;

    Department of Chemical Engineering Materials Science, and Biomedical Engineering University of Michigan, Ann Arbor Michigan, 48109, USA;

    Department of Chemical Engineering Materials Science, and Biomedical Engineering University of Michigan, Ann Arbor Michigan, 48109, USA;

    Department of Nano-lntegrated Cogno-mechatronics Engineering (NICE) Pusan National University Busan, 609-735, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号