首页> 外文期刊>Advanced Functional Materials >Embossed Hollow Hemisphere-Based Piezoelectric Nanogenerator and Highly Responsive Pressure Sensor
【24h】

Embossed Hollow Hemisphere-Based Piezoelectric Nanogenerator and Highly Responsive Pressure Sensor

机译:压花空心半球压电纳米发电机和高响应压力传感器

获取原文
获取原文并翻译 | 示例
           

摘要

Harvesting energy using piezoelectric materials such as ZnO, at nanoscale due to geometrical effects, are highly desirable for powering portable electronics, biomedical, and healthcare applications. Although one-dimensional nanostructures such as nanowires have been the most widely studied for these applications, there exist a limited number of piezomaterials that can be easily manufactured into nanowires, thus, developing effective and reliable means of preparing nanostructures from a wide variety of piezomaterials is essential for the advancement of self-powered devices. In this study, ZnO embossed hollow hemispheres thin film for highly responsive pressure sensors and nanogenerators are reported. The asymmetric hemispheres, formed by an oblique angle deposition, cause an unsymmetrical piezoelectric field direction by external force, resulting in the control of the current direction and level at about 7 mA cm~(-2) at normal force of 30 N. The nanogenerators repeatedly generate the voltage output of ≈0.2 V, irrespective of the degree of symmetry. It is also demonstrated that when one piece of hemisphere layer is stacked over another to form a layer-by-layer matched architecture, the output voltage in nanogenerators increases up to 2 times.
机译:由于对几何学的影响,使用诸如ZnO的压电材料在纳米尺度上收集能量对于为便携式电子设备,生物医学和医疗保健应用提供动力非常必要。尽管一维纳米结构(例如纳米线)已针对这些应用进行了最广泛的研究,但是存在数量有限的压电材料,可以容易地将其制造为纳米线,因此,开发出从多种压电材料制备纳米结构的有效而可靠的方法已成为现实。对于自供电设备的进步至关重要。在这项研究中,报道了用于高响应压力传感器和纳米发电机的ZnO压花空心半球薄膜。由斜角沉积形成的不对称半球在外力作用下引起不对称的压电场方向,从而在30 N的法向力下将电流方向和水平控制在大约7 mA cm〜(-2)处。不管对称程度如何,都会重复产生≈0.2V的电压输出。还证明了,当一个半球层堆叠在另一个半球层上以形成逐层匹配的体系结构时,纳米发电机中的输出电压会增加多达2倍。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第14期|2038-2043|共6页
  • 作者单位

    School of Mechanical and Advanced Materials Engineering KIST-UNIST-Ulsan Center for Convergent Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan, 689-798, Republic of Korea;

    School of Advanced Materials Science and Engineering Sungkyunkwan University (SKKU) Suwon, 440-746, Republic of Korea;

    Electronic Materials Research Center, KIST, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 137-791, Republic of Korea KU-KIST Graduate School of Converging Science and Technology Korea University 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea., Republic of Korea;

    Department of Chemistry & Nano Science Ewha Womans University Seoul, 120-750, Republic of Korea;

    School of Advanced Materials Science and Engineering Sungkyunkwan University (SKKU) Suwon, 440-746, Republic of Korea;

    School of Mechanical and Advanced Materials Engineering KIST-UNIST-Ulsan Center for Convergent Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan, 689-798, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号