首页> 外文期刊>Advanced Functional Materials >The Size Dependence of Hydrogen Mobility and Sorption Kinetics for Carbon-Supported MgH_2 Particles
【24h】

The Size Dependence of Hydrogen Mobility and Sorption Kinetics for Carbon-Supported MgH_2 Particles

机译:碳载MgH_2颗粒的氢迁移率和吸附动力学的尺寸依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

MgH_2 is a promising material for reversible solid-state hydrogen storage. It is known that particle size can have a strong impact on hydrogen dynamics and sorption characteristics, but more detailed insight has been hampered by the great challenge to prepare small and well-defined particles and study their hydrogen storage properties upon cycling. The preparation of MgH_2 nanopar-ticles supported on high surface area carbon aerogels with pore sizes varying from 6-20 nm is reported. Two distinctly different MgH_2 particle populations are observed: X-ray diffraction invisible nanoparticles with sizes below 20 nm, and larger, crystalline, MgH_2 particles. They release hydrogen at temperatures 140 ℃ lower than bulk MgH_2. The size-dependent hydrogen kinetics is for the first time corroborated by intrinsic hydrogen dynamics data obtained by solid state ~1H NMR. Fast cycling is possible (80% of the capacity absorbed within 15 min at 18 bar and 300 ℃), without a change in the hydrogen sorption properties, showing that the growth of the nanoparticles is effectively prevented by the carbon support. A clear correlation is found between the hydrogen desorption temperature and the size of the MgH_2 nanoparticles. This illustrates the potential of the use of supported nanoparticles for fast, reversible, and stable hydrogen cycling.
机译:MgH_2是用于可逆固态氢存储的有前途的材料。众所周知,粒径对氢动力学和吸附特性有很大影响,但是制备小且轮廓分明的颗粒并研究其在循环时的氢存储特性的巨大挑战阻碍了更详细的研究。报道了在高表面积碳气凝胶上负载的MgH_2纳米颗粒的制备,其孔径为6-20 nm。观察到两个明显不同的MgH_2粒子群:X射线衍射看不见的纳米粒子,尺寸小于20 nm,以及较大的结晶MgH_2粒子。它们在比本体MgH_2低140℃的温度下释放氢。尺寸相关的氢动力学首次得到了由固态〜1H NMR获得的固有氢动力学数据的证实。快速循环是可能的(在18 bar和300℃下15分钟内吸收容量的80%),而氢吸附特性没有变化,这表明碳载体可有效阻止纳米颗粒的生长。发现氢解吸温度和MgH_2纳米粒子的大小之间存在明显的相关性。这说明了使用负载型纳米颗粒进行快速,可逆和稳定的氢循环的潜力。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第23期|3604-3611|共8页
  • 作者单位

    Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht, The Netherlands;

    Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht, The Netherlands;

    Department of Chemical Engineering and Chemistry Eindhoven University of Technology Postbus 513 5600 MB, Eindhoven, The Netherlands;

    Centre for Surface Science and Catalysis KU Leuven Kasteelpark Arenberg 23 - bus 2461 3001, Leuven, Belgium;

    Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht, The Netherlands;

    Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号