首页> 外文期刊>Advanced Functional Materials >Turning ZnO into an Efficient Energy Upconversion Material by Defect Engineering
【24h】

Turning ZnO into an Efficient Energy Upconversion Material by Defect Engineering

机译:通过缺陷工程将ZnO转化为高效的能量上转换材料

获取原文
获取原文并翻译 | 示例
           

摘要

Photon upconversion materials are attractive for a wide range of applications from medicine, biology, to photonics. Among them, ZnO is of particular interest owing to its outstanding combination of materials and physical properties. Though energy upconversion has been demonstrated in ZnO, the exact physical mechanism is still unknown, preventing control of the processes. Here, defects formed in bulk and nanostructured ZnO synthesized using standard growth techniques play a key role in promoting efficient energy upconversion via two-step two-photon absorption (TS-TPA). From photoluminescence excitation of the anti-Stokes emissions, the threshold energy of the TS-TPA process is determined as being 2.10-2.14 eV in all studied ZnO materials irrespective of the employed growth techniques. This photo-electron paramagnetic resonance studies show that this threshold closely matches the ionization energy of the zinc vacancy (a common grown-in intrinsic defect in ZnO), thereby identifying the zinc vacancy as being the dominant defect responsible for the observed efficient energy upconversion. The upconversion is found to persist even at a low excitation density, making it attractive for photonic and photovoltaic applications.
机译:光子上转换材料对于从医学,生物学到光子学的广泛应用具有吸引力。其中,ZnO由于其材料和物理性能的出色结合而特别受关注。尽管已经在ZnO中证明了能量上转换,但是确切的物理机制仍然未知,无法控制过程。在这里,使用标准生长技术合成的块状和纳米结构ZnO中形成的缺陷在通过两步两光子吸收(TS-TPA)促进有效的能量上转换中起着关键作用。根据反斯托克斯发射的光致发光激发,在所有研究的ZnO材料中,无论采用何种生长技术,TS-TPA工艺的阈值能量都确定为2.10-2.14 eV。该光电子顺磁共振研究表明,该阈值与锌空位(ZnO中常见的内生缺陷)的电离能紧密匹配,从而将锌空位确定为负责观察到的有效能量上转换的主要缺陷。发现上转换即使在低激发密度下也能持续存在,使其对光子和光伏应用具有吸引力。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第24期|3760-3764|共5页
  • 作者单位

    Department of Physics Chemistry and Biology Linkoeping University 581 83, Linkoeping, Sweden;

    Department of Physics Chemistry and Biology Linkoeping University 581 83, Linkoeping, Sweden;

    Department of Nanobio Materials and Electronics Gwangju Institute of Science and Technology Gwangju 500712, Republic of Korea;

    Department of Electrical and Computer Engineering University of California La Jolla, CA 92093, USA;

    Department of Physics Chemistry and Biology Linkoeping University 581 83, Linkoeping, Sweden;

    Department of Physics Chemistry and Biology Linkoeping University 581 83, Linkoeping, Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号