首页> 外文期刊>Advanced Functional Materials >In Situ Electrical Characterization of Anatase TiO_2 Quantum Dots
【24h】

In Situ Electrical Characterization of Anatase TiO_2 Quantum Dots

机译:锐钛矿型TiO_2量子点的原位电学表征

获取原文
获取原文并翻译 | 示例
           

摘要

A novel method for performing in situ characterization of the electrical properties of pristine, ultrafine nanopowders is reported. A modified dilato-meter, with a spring-loaded push rod and electrodes, allows for the simultaneous monitoring of the packed nanopowder's lateral displacement as well as its complex impedance spectroscopy as a function of temperature within a controlled environment. Anatase TiO_2 quantum dots of 2 nm diameter, on average, are examined and found to simultaneously shrink and become more resistive upon initial heating. The resistance changes by approximately 3 orders of magnitude upon heating, associated with the desorption of adsorbed water, demonstrating the need for sample preconditioning. Subsequent electrical resistivity measurements, as a function of oxygen partial pressure, over approximately 40 orders of magnitude, at temperatures between 300 ℃ and 400 ℃, exhibit nearly 9 orders of magnitude change in conductivity. The data are consistent with a Frenkel-based defect disorder model characterized by an enthalpy of reduction of 5.5 ± 0.5 eV.
机译:报道了一种用于原位,超细纳米粉末电性能的原位表征的新颖方法。一种改进的弹力计,带有弹簧加载的推杆和电极,可以在受控环境中同时监视填充纳米粉的横向位移以及其复阻抗谱,这是温度的函数。检查平均直径为2 nm的锐钛矿型TiO_2量子点,发现它们在初始加热时会同时收缩并变得更具电阻。电阻在加热时变化大约3个数量级,这与吸附水的解吸有关,这表明需要进行样品预处理。随后的电阻率测量值,在300℃至400℃之间,随氧气分压的变化而变化,大约超过40个数量级,显示出电导率变化近9个数量级。该数据与基于Frenkel的缺陷障碍模型相一致,该模型的特征在于降低焓为5.5±0.5 eV。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第31期|4952-4958|共7页
  • 作者单位

    Department of Materials Science and Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139, USA;

    Department of Materials Science and Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139, USA,International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University I2CNER Bldg. 423, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan;

    International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering School of Energy & Power Engineering Xian Jiaotong University Room 1208, North 2 Bldg No. 28, Xianning West Rd, Xian, Shaanxi 710049, P. R.China;

    Department of Materials Science and Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号