首页> 外文期刊>Advanced Functional Materials >Effect of Nano-Porosity on High Gain Permeable Metal-Base Transistors
【24h】

Effect of Nano-Porosity on High Gain Permeable Metal-Base Transistors

机译:纳米孔隙率对高增益可渗透金属基晶体管的影响

获取原文
获取原文并翻译 | 示例
           

摘要

As one type of vertical thin-film transistors, permeable metal-base transistors (PMBTs) with a permeable metal film embedded between two semiconductor layers have been proposed for high gain current amplifier. In principle, compared with conventional bipolar transistors, PMBTs should have a higher speed and are easier to fabricate compatible with flexible and printed electronics. However, functional PMBTs are not realized due to low current gains (<50) and lack of output current saturation. In this paper, making use of the nano-textured surface of an organic semiconductor, we are able to fabricate devices with permeable metal base films having a pore size of about 20 nm and achieve current gains up to 476 with output current saturation. Correlations between the nano-scale porosity and the charge transmission/amplification behaviors in the device are explained with characterization of the metal base porosity. From our device simulation results, the small pore size is essential to achieve current saturation in the device due to the potential-pinning effect in the small pore regions. Finally, using a similar strategy, we also demonstrate a high gain (=260) solution-processed metal oxide-based PMBTs with output current saturation.
机译:作为一种垂直薄膜晶体管,已经提出在高增益电流放大器中在两个半导体层之间嵌入可渗透金属膜的可渗透金属基晶体管(PMBT)。原则上,与传统的双极型晶体管相比,PMBT应当具有更高的速度并且更容易与柔性和印刷电子产品兼容。但是,由于电流增益低(<50)且缺乏输出电流饱和,无法实现功能性PMBT。在本文中,利用有机半导体的纳米结构化表面,我们能够制造出孔径约为20 nm的具有渗透性金属基膜的器件,并在输出电流饱和的情况下获得高达476的电流增益。通过表征金属基础孔隙率来解释纳米级孔隙率与器件中电荷传输/放大行为之间的关系。从我们的设备仿真结果来看,由于小孔区域中的电位钉扎效应,小孔径对于实现设备中的电流饱和至关重要。最后,使用类似的策略,我们还演示了具有输出电流饱和的高增益(= 260)固溶处理的基于金属氧化物的PMBT。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第38期|6056-6065|共10页
  • 作者单位

    Department of Materials Science and Engineering University of Florida Gainesville, FL 32611-6400, USA;

    Department of Materials Science and Engineering University of Florida Gainesville, FL 32611-6400, USA;

    Department of Electrical and Computer Engineering University of Florida P.O. Box 116130, Gainesville, FL 32611-6130, USA;

    Department of Materials Science and Engineering University of Florida Gainesville, FL 32611-6400, USA;

    Department of Electrical and Computer Engineering University of Florida P.O. Box 116130, Gainesville, FL 32611-6130, USA;

    Department of Materials Science and Engineering University of Florida Gainesville, FL 32611-6400, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号