首页> 外文期刊>Advanced Functional Materials >Binary Li_4Ti_5O_(12)-Li_2Ti_3O_7 Nanocomposite as an Anode Material for Li-Ion Batteries
【24h】

Binary Li_4Ti_5O_(12)-Li_2Ti_3O_7 Nanocomposite as an Anode Material for Li-Ion Batteries

机译:二元Li_4Ti_5O_(12)-Li_2Ti_3O_7纳米复合材料作为锂离子电池的负极材料

获取原文
获取原文并翻译 | 示例
           

摘要

Li_4Ti_5O_(12) typically shows a flat charge/discharge curve, which usually leads to difficulty in the voltage-based state of charge (SOC) estimation, in this study, a facile quench-assisted solid-state method is used to prepare a highly crystalline binary Li_4Ti_5O_(12)-Li_2Ti_3O_7 nanocomposite. While Li_4Ti_5O_(12) exhibits a sudden voltage rise/drop near the end of its charge/discharge curve, this binary nanocomposite has a tunable sloped voltage profile. The nanocomposite exhibits a unique lamellar morphology consisting of interconnected nanograins of ≈20 nm size with a hierarchical nanoporous structure, contributing to an enhanced rate capability with a capacity of 128 mA h g~(-1) at a high C-rate of 10 C, and excellent cycling stability.
机译:Li_4Ti_5O_(12)通常显示平坦的充电/放电曲线,这通常会导致基于电压的充电状态(SOC)估计困难,在此研究中,使用了一种简便的淬灭辅助固态方法来制备晶体二元Li_4Ti_5O_(12)-Li_2Ti_3O_7纳米复合材料。尽管Li_4Ti_5O_(12)在其充电/放电曲线的末端附近出现突然的电压上升/下降,但该二元纳米复合材料具有可调的倾斜电压曲线。纳米复合材料表现出独特的层状形态,由相互关联的≈20nm大小的纳米颗粒和分层的纳米多孔结构组成,有助于在10 C的高C速率下以128 mA hg〜(-1)的容量提高速率能力,以及出色的循环稳定性。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第5期|640-647|共8页
  • 作者单位

    Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy Fudan University, Shanghai 200438, China;

    Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy Fudan University, Shanghai 200438, China;

    Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy Fudan University, Shanghai 200438, China;

    Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy Fudan University, Shanghai 200438, China;

    Department of Materials Science and Advanced Materials Laboratory Fudan University Shanghai 200438, China;

    Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy Fudan University, Shanghai 200438, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号